
IRISreader

A Python Library for IRIS Data Processing

Cédric Huwyler1 Lucia Kleint1,3 Brandon Panos1 Denis Ullmann2 Martin Melchior1 Säm Krucker1,4 Sviatoslav Voloshynovskiy2

1 University of Applied Sciences and Arts Northwestern Switzerland, Windisch, Switzerland 3 Kiepenheuer Institut für Sonnenphysik (KIS), Freiburg, Germany

2 University of Geneva, CUI-SIP, Geneva, Switzerland 4 Space Sciences Laboratory, University of California, Berkeley, USA

IRISreader is a Python library that allows for simple and efficient access to IRIS
level 2 data in order to facilitate machine learning applications and to establish a big
data supporting architecture for IRIS. The library is centered around the OBS

interface that provides intuitive, structured access to IRIS observations. In addition,
IRISreader offers functionality to efficiently iterate through years of IRIS data. We
aim at creating an end-to-end machine learning research environment for IRIS data,
and use this library to also provide functionality for downloading observations from
the LMSAL repository and to do basic pre-processing on the data, such as efficient
cropping of images and interpolating between different spectral resolutions; the
library is particularly suited for interactive use in Jupyter notebooks. IRISreader is
tailored specifically for big data processing and has no intention to compete with
existing Python frameworks (such as sunpy/IRISpy) that are more directed towards
science applications on single observations.

IRISreader is a Python library that allows for simple and efficient access to IRIS
level 2 data in order to facilitate machine learning applications and to establish a big
data supporting architecture for IRIS. The library is centered around the OBS

interface that provides intuitive, structured access to IRIS observations. In addition,
IRISreader offers functionality to efficiently iterate through years of IRIS data. We
aim at creating an end-to-end machine learning research environment for IRIS data,
and use this library to also provide functionality for downloading observations from
the LMSAL repository and to do basic pre-processing on the data, such as efficient
cropping of images and interpolating between different spectral resolutions; the
library is particularly suited for interactive use in Jupyter notebooks. IRISreader is
tailored specifically for big data processing and has no intention to compete with
existing Python frameworks (such as sunpy/IRISpy) that are more directed towards
science applications on single observations.

Image Cropping

Because IRIS level 2 images are rotated in order to correct for misalignment effects,
one usually finds null patches (with value -200) near the image frame borders. We
created an algorithm that efficiently crops out only the part of the image that is not
null by moving in lines from all four sides toward the center and stopping once the
number of non-negative pixels along the line stops increasing:

Image Cropping

Because IRIS level 2 images are rotated in order to correct for misalignment effects,
one usually finds null patches (with value -200) near the image frame borders. We
created an algorithm that efficiently crops out only the part of the image that is not
null by moving in lines from all four sides toward the center and stopping once the
number of non-negative pixels along the line stops increasing:

How IRISreader mirrors the IRIS observation structureHow IRISreader mirrors the IRIS observation structure

Observation

Raster
SJI

Si IV Mg II h/k

Mg II wing

C II Fe XII O I

Si IV Mg II k

(etc.)

Individual rasters
are combined

from irisreader import observation

obs = observation(“/iris/2014/09/10/20140910_112825_3860259453/”)

print(obs.sji.get_lines()) print(obs.raster.get_lines())

print(obs.mode)

‘sit-and-stare’

print(obs.desc)

‘Large sit-and-stare 0.3x120 1s Si IV Mg II h/k Deep x 8 FUV spec’

obs.close()

print(obs.sji[0].n_steps)

for raster in obs.raster:

 print(raster.shape)

print(obs.raster(“Mg”).n_steps)

if obs.sji.has_line(“Si IV”):

 obs.sji(“Si IV”).plot(0)

Access by index: to iterate over all lines Access by name: to access specific lines

1 2 3 4 5 6 7 ..

Check IRISreader (alpha) out on Github: https://github.com/i4Ds/IRISreader

The two ways of accessing lines:

sji0_data = obs.sji[0][:,:,:]

mg_raster_slice = obs.raster(“Mg”)[10:20,400,400:500]

image = obs.raster(“Mg”).get_image_step(400)

sat_rot = obs.raster(“Mg”).headers[0][‘SAT_ROT’]

Data cubes can be accessed directly via the index operator in the format
[time step, y pixel, x / lambda pixel], e.g.:

Images for single time steps can be loaded efficiently with get_image_step(), e.g.:

Headers can be accessed through the (lazy loaded) headers list:

Accessing data and headers

Loaders

Lines /
Data
Cubes

Iterating through years of observations

The following code reads the Mg spectra from all observations in a directory into a
list, interpolating and cropping them to a range between 2794-2800 Å:

Iterating through years of observations

The following code reads the Mg spectra from all observations in a directory into a
list, interpolating and cropping them to a range between 2794-2800 Å:

from irisreader import obs_iterator

spectra = []

lbd_min, lbd_max = 2794, 2800

for obs in obs_iterator(“/iris/”):

 if obs.raster.has_line(“Mg”):

 obs.raster(“Mg”).crop()

 for i in range(obs.raster(“Mg”).n_steps):

 spectrum = obs.raster(“Mg”) \

.get_interpolated_image_step(i, lbd_min, lbd_max, 100)

spectra.append(spectrum)
Lazy loading of data

A typical data cube in a FITS extension can take a few hundred megabytes in size.
IRISreader only loads data and headers upon request and avoids time-consuming
loading of unwanted data. This speeds up batch mode processing and reduces
waiting times in interactive sessions.

obs.sji(“Mg II h/k”).crop()

obs.sji(“Mg II h/k”).plot(1190, units=”coordinates”)

Pixels ≥ 0

y Crop here

(exaggerated example)

IRIS-9, Göttingen, 25-29 June 2018

Poster

5. Opportunities and challenges

irisreader - A Python Library for IRIS Data Processing

C. Huwyler1 L. Kleint1 B. Panos1 D. Ullman2 M. Melchior1 S. Krucker1 S. Voloshynovskyy2

1University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Institute for Data Science
2University of Geneva, Switzerland, Computer Vision and Multimedia Laboratory

Irisreader is a Python library created at FHNW that facilitates machine learning applications on IRIS
level 2 data. Machine learning libraries, such as scikit-learn, tensorflow, keras, etc. are readily available
for Python, but IRIS data has very specific headers and keywords that are usually obtained using
the IDL SolarSoft routine read iris l2.pro. Irisreader gives simple and e�cient access to headers and
data through a Python-based implementation of read iris l2.pro, thus enabling machine learning tools
to directly access the data. In addition, irisreader currently allows for downloading single observations
from the LMSAL repository, basic pre-processing of the data (such as cropping images and interpolating
between di↵erent spectral resolutions) and basic plotting of slit-jaw images and spectra. Particularly
useful features of irisreader are its ability to provide structured access to whole observations at once
and to iterate e�ciently through years of IRIS data. Irisreader will be released on Github before the
9th IRIS workshop.

90

