Alignment between IRIS and ground-based data

Rosseland Centre for Solar Physics, University of Oslo

tutorial, IRIS-9 Workshop in Göttingen, 25-June-2018

Rosseland Centre for Solar Physics

Luc Rouppe van der Voort

steps in alignment SST and IRIS

 check pointing / common FOV •common time range match spatial sampling: factor 3 pixel scale difference scale SST to match IRIS or scale IRIS to match SST •matching diagnostics: •SJI 2832 Mg h wing vs Ha/Ca 8542 far wing •SJI 2796 Mg k core vs Ca 8542 wing find offsets through cross-correlation •IRIS internal alignment: fiducial marks

 \rightarrow make level3 data cubes for crispex viewing

steps in alignment SST and IRIS

 check pointing / common FOV •common time range match spatial sampling: factor 3 pixel scale difference scale SST to match IRIS or scale IRIS to match SST •matching diagnostics: •SJI 2832 Mg h wing vs Ha/Ca 8542 far wing •SJI 2796 Mg k core vs Ca 8542 wing find offsets through cross-correlation •IRIS internal alignment: fiducial marks

 \rightarrow make level3 data cubes for crispex viewing

-600

pointing

IRIS

Medium dense 16-step raster 5x60 07:44 - 10:03 UT SJI 1330, 1400, 2796 exposure time 0.5 s (21 s cadence) 0.166 arcsec / pixel

IRIS

Medium dense 16-step raster 5x60 07:44 - 10:03 UT SJI 1330, 1400, 2796 exposure time 0.5 s (21 s cadence) 0.166 arcsec / pixel

SST

CRISP Ca II 8542, H-alpha 07:49 - 10:10 0.057 arcsec / pixel

50. y [arcsec] 20 SST/CRISP 2016.09.03 07:49:00

Ca II 8542 -1.750 Å

IRIS

Medium dense 16-step raster 5x60 07:44 - 10:03 UT SJI 1330, 1400, 2796 exposure time 0.5 s (21 s cadence) 0.166 arcsec / pixel

SST

CRISP Ca II 8542, H-alpha 07:49 - 10:10 0.057 arcsec / pixel

Ca || 8542 - 1.750 Å

IRIS

Medium dense 16-step raster 5x60 07:44 - 10:03 UT SJI 1330, 1400, 2796 exposure time 0.5 s (21 s cadence) 0.166 arcsec / pixel

SST

CRISP Ca II 8542, H-alpha 07:49 - 10:10 0.057 arcsec / pixel

Ca II 8542 line core

IRIS

Medium dense 16-step raster 5x60 07:44 - 10:03 UT SJI 1330, 1400, 2796 exposure time 0.5 s (21 s cadence) 0.166 arcsec / pixel \bigcirc

X IDL 0

SST

CRISP Ca II 8542, H-alpha 07:49 - 10:10 0.057 arcsec / pixel

SJI 2796 - Mg II k core

•pointing common time range match spatial sampling matching diagnostics cross-correlation IRIS internal alignment Intervel3 cubes (crispex)

photospheric SJI 2832 would have been best match but was not chosen to keep fast cadence and telemetry

IRIS

Medium dense 16-step raster 5x60 07:44 - 10:03 UT SJI 1330, 1400, 2796 exposure time 0.5 s (21 s cadence) 0.166 arcsec / pixel X IDL 0

SST

CRISP Ca II 8542, H-alpha 07:49 - 10:10 0.057 arcsec / pixel

SJI 2796 - Mg II k core

• • •

pointing •common time match spatial sampling matching diagnostics •cross-correlation IRIS internal alignment Ievel3 cubes (crispex)

SJI 2796

X CRISPEX-446: Slit-jaw image IRIS 2796

Color table scaling [Carrected DN]

IRIS internal alignment: check the fiducial mark in FUV, NUV spectra and all SJI

SJI 2796

level 3 cubes with SST lines included

example: UV burst / Ellerman bomb under surge

example: UV burst / Ellerman bomb under surge

example: UV burst / Ellerman bomb under surge

tailed spectrum	
[km/e]	
0.0 45.0	
V	
.00 8542.50]
rom]	52
pectral T-slice	
ty [km/s]	
0,0 45,0	L
-	ł
	-
	-
	·
	-
41.00 8542.50	
strons]	
	1

sunspot: SJI 2796 vs Ca 8542

Ca II 8542 line core

sunspot: SJI 2832 vs Ca 8542

Ca II 8542 line core

sunspot: photospheric SJI 2832 is needed

200

Ca II 8542 line core

sunspot: photospheric SJI 2832 is needed

200

sunspot: SJI 2796 vs Ca 8542

200

µ=0.57 : offset due to formation height difference

disk center Quiet Sun: SJI 2796 vs Ca 8542

Ca II 8542 blue wing (-0.595 Å)

disk center Quiet Sun: SJI 2796 vs Ca 8542

Ca II 8542 blue wing (-0.595 Å)

limb: SJI 2796 vs Ca II H

limb: SJI 2796 vs Ca II H

Limb: make sure significant disk is in FOV consider to include photospheric SJI 2832

Alignment between IRIS and ground-based data concluding remarks

early IRIS days

- check pointing / common FOV
- match spatial sampling: factor 3 pixel scale difference •scale SST to match IRIS or scale IRIS to match SST
 - •SJI 2832 Mg h wing vs Ha/Ca 8542 far wing
 - •SJI 2796 Mg k core *vs* Ca 8542 wing
- •find offsets through cross-correlation
- •IRIS internal alignment: fiducial marks

