Rosseland Centre for Solar Physics

Optically thick diagnostics

Mats Carlsson Rosseland Centre for Solar Physics, Univ Oslo Göttingen, June 25 2018

Mg II h&k jargon

Additional complication I: partial redistribution

Additional complication 2:3D effects in h3 & k3

Additional complication 2:3D effects in h3 & k3

Basic properties of Mg compared to Ca

	Ca	Mg
Abundance (Asplund et al. 2009)	6.34±0.04	7.60±0.04
Atomic weight	40.1 u	24.3 u
Ionization potential I⇒II	6.11 eV	7.6 eV
Ionization potential II⇒III	11.87 eV	15.04 eV

Abundance

Mg is 18.2 times more abundant.

Mg II h&k form 2.9 scale heights higher than Ca II H&K, if all else equal

► 2.9 scale heights \approx 500-900 km

Ionization

Carlsson & Leenaarts 2012

Mg II term diagram

Comparison of Mg II k and Ca II K profiles

► convert / to T_{rad}

- ► take out wavelength sensitivity of the Planck function
 ► convert wavelength to $q = \frac{\lambda \lambda_0}{\Delta \lambda_D}$
 - ► take out difference in thermal width

_

Compare largest $k_3 \tau = 1$ heights

Mg II h&k sample the whole chromosphere, and reach higher than Ca II H&K

h&k line cores are unique:

Hybrid approach Synthetic Mg II h&k observations

- Based on the 24x24x14 Mm simulation of "enhanced network"
 - samples a limited range of solar conditions
- available for download at;
 - http://iris.lmsal.com/modeling.html
 - http://sdc.uio.no/search/simulations
- description of methods and use in
 - Carlsson et al 2016, A&A 585, A4
 - The Formation of IRIS Diagnostics I II III
 - Leenaarts et al.: 2013a, ApJ, 772, 89
 - Leenaarts et al.: 2013b, ApJ, 772, 90
 - Pereira et al.: 2013, ApJ, 778, 143

Simulations do not match the line width and height

R 🛑 C S

disk-center: μ =1

y (Mm)

CS

limbward: μ =0.4

R C S

Observables: intensity and Doppler-shift of features

• Automated detection routine in Solarsoft

R

CS • Another possibility is double Gaussian fitting, also in Solarsoft.

$h_3 \& k_3$ form 200 km below the TR

$h_3 \& k_3$: Doppler shift measures $v_z(\tau=1)$

h₃-k₃ Doppler shift measures velocity gradient

What about h₃-k₃ intensity? **It's complicated...**

- internetwork: weak correlation between τ=1 height and intensity: density diagnostic
- network: temperature, but not from τ=1?
- plage: diagnostic of coronal density and temperature?

R 🛑 C S

h_{2v} & k_{2v} peak form in mid chromosphere

h_{2v} & k_{2v} peak intensity measures temperature

h_{2v} & k_{2v} peak separation measures velocity gradients in the chromosphere

very wide k2 separation is a measure of deep chromospheric temperature rise

Emerging flux region k3 intensity

Emerging flux region

k3 Doppler shift = velocity just below TR

Emerging flux region h3-k3 Doppler shift = vertical velocity gradient

noisy but not featureless

h3 - k3 Doppler shift difference [km/s]

What remains at IRIS resolution?

S/N ratio

What remains at IRIS resolution?

What remains at IRIS resolution?

R

C S

velocity diagnostic

- ▶ Line core forms ~200 km below transition region
- Line core is an excellent velocity diagnostic
- h&k combined measure velocity gradients: short-wavelength oscillations?
- peaks measure mid-chromospheric temperatures
- additional diagnostics:

R

C S

- chromospheric velocity extremes
- mid-chromospheric velocity

Remember:

All based on simulations. We believe most results are robust, but do not blindly apply the results to your data.

R C S

R C S

C II lines at 1334-1336

R 🛑 C S

Rathore & Carlsson 2015 Rathore et al 2015

C II 1335 multiplet

R 🛑 C S

Ionization balance

Number of peaks

R 🛑 C S

Eddington Barbier

Height of formation

R C S

Height of formation

Intensity as temperature diagnostic

Line asymmetry

Doppler shift of single-Gaussian fit

R 🛑 C S

Line width

Optically thin approximation versus full radiative transfer

optically thin $\approx 44 \text{ kK}$ optically thick $\approx 14 \text{ kK}$

R C S

Optically thin approximation versus full radiative transfer

Si IV - C II - Mg II

Height of core τ=l C II Mg II

OII356

R C S

Lin & Carlsson 2015

Optically thin formation

Line width measure of "turbulence"

CIII351.7

