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ABSTRACT

Solar f-modes are surface gravity waves that propagate horizontally in a thin layer near the photosphere with a
dispersion relation approximately that of deep water waves. At the power maximum near frequency !/2� ¼ 3 mHz,
the wavelength of 5Mm is large enough for various wave scattering properties to be observable. Gizon & Birch have
calculated spatial kernels for scattering in the Born approximation. In this paper, using isolated small magnetic
features as approximate point scatterers, a linear-response kernel has been measured. In addition, the kernel has been
estimated by deconvolving the magnetograms from the travel-time maps. The observed kernel is similar to the
theoretical kernel for wave damping computed by Gizon & Birch: it includes elliptical and hyperbolic features. This
is the first observational evidence to suggest that it is appropriate to use the Born approximation to compute kernels
(as opposed to the ray approximation). Furthermore, the observed hyperbolic features confirm that it is important to
take into account scattering of the waves coming from distant source locations (as opposed to the single-source
approximation). The observed kernel is due to a superposition of the direct and indirect effects of themagnetic field. A
simple model that includes both monopole and dipole scattering compares favorably with the data. This new tech-
nique appears to be promising to study how seismic waves interact with magnetic flux tubes.

Subject headinggs: methods: data analysis — scattering — Sun: helioseismology — Sun: magnetic fields —
techniques: image processing

1. INTRODUCTION

In time-distance helioseismology (Duvall et al. 1993), travel
times for waves between separated photospheric locations are
measured. For a nonrotating Sun whose properties are only a
function of radius, the travel times will be only a function of the
distance between the photospheric locations. Inhomogeneities in
the Sun will lead to local variations of the travel times. Time-
distance helioseismology attempts to measure the travel-time
variations and then to infer the solar inhomogeneities.

An important part of this process is the calculation of the
forward problem, i.e., how the measured travel time depends on
the inhomogeneities in the solar interior. Early work used ray
theory to perform this computation (D’Silva & Duvall 1995;
Kosovichev 1996). In the ray theory calculation, which is the
limit of high frequency or infinite bandwidth, the travel-time var-
iation only depends on the inhomogeneities along a single curve,
or ray path, connecting the surface locations. Bogdan (1997)
showed that finite-wavelength effects must be taken into account,
so that the sensitivity to a perturbation extends beyond the ray
path.

In more recent calculations (Birch & Kosovichev 2000; Gizon
& Birch 2002; Birch et al. 2004), travel-time responses have
been calculated as a single scattering off inhomogeneities using
the Born approximation. In this paper, we consider f-modes that
propagate horizontally in a thin layer close to the surface. An
f-mode travel time can be measured from any surface location r1
to another location r2. Each pair of points (r1, r2) is fully spec-
ified by the central location r ¼ (r1 þ r2)/2 and the vector# ¼
r2 � r1. At fixed#, we obtain a travel-time map by varying the

central position r. Throughout this paper, we only consider pairs
of points for a fixed value of the separation distance,� ¼ 9:9Mm.
We use the simplifying assumption (Gizon & Birch 2002) that
the sensitivity of f-mode travel times is restricted to a horizon-
tal plane, which we call the ‘‘surface.’’ As a result, we write the
travel-time perturbation ��(r;#) due a small-amplitude inhomo-
geneity on the surface, �q, as the two-dimensional (2D) spatial
convolution of a kernel function, K, with �q:

�� r;#ð Þ ¼
Z Z

dr0 K r0 � r;#ð Þ�q r0ð Þ: ð1Þ

The inhomogeneity �q (e.g., a perturbation in temperature,
density, etc.) is distributed over the whole surface. The integral is
taken over all surface locations r0. We only examine the mean
travel time, i.e., the average ½�� (r;#)þ ��(r;�#)�/2. In this
scenario, the two-dimensional kernel function is calculated from
theory. There are different kernel functions for different types
of inhomogeneities, e.g., temperature, flow, density, magnetic
field, damping, and source kernels, although these are not all
independent (and have not all been calculated). As shown first
by Woodard (1997), different perturbations may have similar
effects on the travel times; in particular a damping perturbation
may be confused with a flow perturbation. The details of the ker-
nels, however, are specific to a particular type of perturbation.
Thus, it would be useful to have additional measurements that
could help us isolate which inhomogeneities are dominant. In the
present paper, the quiet-Sun magnetic field is used as the pertur-
bation. The magnetic field features are in general associated with
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the supergranulation network and have a lifetime long enough
that travel times can be observed. They are reasonably isolated
so that the fine structure of the kernel can be seen.

Examples of 2D f-mode theoretical kernels are shown in
Figure 1 (Gizon & Birch 2002). The largest features are located
near the two measurement points. In addition, other possibly ob-
servable features are present, including ellipses and hyperbolae
whose foci are at the measurement points r1 and r2. We note that
the elliptical features, which are due to scattering in a plane, are
also seen in the 2D travel-time kernels studied in geoseismology
(Tong et al. 1998). Hyperbolae result from the scattering of
waves generated from distant source locations. Most features
present in the picture are at the scale of the dominant wavelength
of the waves analyzed, in this case 5Mm. Onemight ask why we
consider that damping might be an important process in small
magnetic elements. It is not just classical damping (Murawski &
Roberts 1993) that is important, but any conversion of f-mode
energy into other waves, such as p-modes orMHDwaves, would
look like damping in a purely f-mode analysis. That such conver-
sion processes might be important has been calculated in detail
by Bogdan et al. (1996).

This paper is an attempt to measure a kernel function in equa-
tion (1). For the horizontal wavenumbers dominant in the Sun,
about l ¼ 100–1000, the surface gravity waves are horizontally
propagating and confined to a thin layer (2 Mm) near the pho-
tosphere. This means that only a two-dimensional kernel need be
considered, namely, the two horizontal spatial coordinates.

How would one of these 2D kernel functions be measured?
Twomethods have been developed and are presented here. In the
first method small (smaller than a wavelength) inhomogeneities
are found that are isolated and live long enough, a few hours, to
measure travel-time variations in their neighborhood. Mathemat-
ically, if a spatial Dirac delta function is inserted into equation (1),
then the kernel function is given directly by the travel-time map
(feature method). If it is assumed that the perturbation, �q, in
equation (1) is given by the observed magnetogram, a deconvo-

lution can be performed to obtain the kernel from the observed
travel times (deconvolution method).
In practice we were not able to find enough strong, isolated

features to approximate a delta function. The resulting feature
kernel is a smoothed version of the real kernel for magnetic fea-
tures. However, it does show the important quantities of a kernel:
strong features near the observation points, ellipses, and hyper-
bolae. This comes out of a very simple analysis, just averaging
travel-time maps around features.

2. OBSERVATIONS AND ANALYSIS

Data from the high-resolution observingmode of theMichelson
Doppler Imager (MDI) instrument (Scherrer et al. 1995) on the
Solar and Heliospheric Observatory (SOHO) satellite have been
used in this study. During 1996–1997 there was considerable ob-
serving time devoted to the study of the quiet Sun in this mode.
The high-resolutionmode ofMDI has a 0.4Mm sampling interval
at disk center. As it may be difficult to resolve some of the smallest
features in the kernels, it was decided to only use data with the full
resolution. In general three variables were observed: line-of-sight
velocity, line-of-sightmagnetic field, and continuum intensity. For
the present study, only the velocity and magnetic field have been
analyzed. To obtain these three variables, telemetry limitations
only permit a region of about 1024 ; 500 pixels to be observed
every minute. We studied 102 different 4 hr time periods, essen-
tially all the data available during 1996–1997 with the full reso-
lution and characterized in the catalog as ‘‘quiet Sun.’’
Both the velocity and magnetic field data have been projected

onto Postel’s azimuthal equidistant projection (Pearson 1990) and
tracked using the small magnetic feature rotation rate (Komm
et al. 1993). The tracked data include a combination of rectan-
gular images (elongated in the east-west or north-south direc-
tion) and square images.
The velocity data cube is filtered to isolate the surface grav-

ity waves, or f-modes. This is done by multiplying the three-
dimensional Fourier transform of the data cube by a filter function.

Fig. 1.—Theoretical kernels for mean travel time from Gizon & Birch (2002). (a) Kernel for source strength; (b) kernel for damping. The locations of the two
observation points are indicated by the crosses.
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The filter function and a filtered and unfiltered spectrum are
shown in Figure 2.

The quiet-Sun magnetograms are significantly affected by
cosmic-ray hits to the detector. These cause artifacts in the mag-
netograms that can be single or multiple pixels but in general are
only present in a single minute’s magnetogram. To remove these
artifacts, the signal for a given spatial pixel is replaced by the
median for 7 minutes in the tracked data. To characterize the per-
turbation function, the average magnetogram for 4 hr is com-
puted and absolute value taken. The reason for computing this
average is to get the properties of the magnetic field covering the
same time period as the oscillation measurements. The absolute
value of the magnetic field is taken, as we do not expect the
perturbation to depend of the field polarity.

2.1. Feature Method

The features are defined by the following algorithm. From
the 4 hr average magnetogram image, the location of the largest
signal is used as the input guess position to a 2D Gaussian fit
over a region 17 ; 17 Mm. In addition to the normal Gaussian
parameters, a constant background is added to characterize the
magnetogram noise. The resulting fit parameters are stored in a
table, and a 4 ; 4 Mm region surrounding the feature center is
zeroed in the image. This procedure is repeated to find the 100
largest features. The parameters for these 100 features are ex-
amined to consider which are suitable for the present study.
Features with FWHM greater than 4 Mm are excluded as are
pairs with separations less than 8 Mm. In addition, features
closer than half of the size of the desired kernel from the edge of
the image are also excluded. On average 25 magnetic features
out of the original 100 remain for further study.

An overall average magnetic feature is derived from the av-
erage magnetic field surrounding each of the feature locations.
This average feature for each 4 hr interval is then averaged over
the 102 4 hr intervals. This overall average feature is then fit by
a 2D Gaussian function plus background. The resulting param-
eters are peak field =76 G, FWHM ¼ 2:6 Mm, and background
=3.4 G. This puts the full width of the average feature at about
half of the wavelength of the f-mode waves.

We analyzed the cross-correlations for a particular pair sep-
aration of 9.9 Mm, or 24 pixels in the Postels projection images.
This particular separation was chosen as the smallest in which
the envelope of the cross-correlation is completely separated from
zero lag. In addition, this separation was chosen to make the com-
parison easier with the theory (Gizon & Birch 2002). The cross-
correlations are computed in frequency space according to

C̃ xþ �x=2; yþ �y=2; !ð Þ ¼ ṽ� x; y; !ð Þṽ xþ �x; yþ �y; !ð Þ;
ð2Þ

where r ¼ (x; y) is the location from equation (1), �x and �y are
the shifts in x and y, C̃(xþ �x/2; yþ �y/2; !) is the temporal
Fourier transform of the cross-correlation at the horizontal co-
ordinate (x; y), ṽ(x; y; !) is the temporal Fourier transform of the
filtered velocity signal, and ! is the temporal frequency. It is
important to characterize the location associated with the cross-
correlation as below the location is compared to that of a fea-
ture. There are 73 combinations of �x, �y for which

23:5 pixels �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2 þ �y2

p
� 24:5 pixels; ð3Þ

which were used in the present study. The resulting two-point
kernel needs to be derotated by the angle � ¼ arctan (�y/�x).

For each of the 102 4 hr intervals and for each of the 73 angles
�, cross-correlations C(x; y; �) were computed for the time lags
�40 minutes � � � 40 minutes. Travel times were computed
from these cross-correlations using the procedure described by
Gizon & Birch (2004). This travel-time computation has the
advantage of overcoming the limitation on noise level caused by
the period of the waves and thus of making possible the mea-
surement of the travel time between two individual points with-
out additional spatial averaging. And in fact, the noise level for
one-direction travel time for a single pair of pixels for the 4 hr
interval is 2.5 minutes out of a travel time of 22 minutes.

These travel-time images are contaminated by a low spatial
frequency variation of the time that varies approximately with
the heliocentric angle. The range of variation over the images is
about 1 s. Each travel-time image is fitted by least squares with a
parabolic function, and the residuals to this fit are used for the
later analysis. A center-to-limb variation of the mean travel time
was noticed in a p-mode study by Duvall (2003). It may be that
this type of problem is caused by applying the filter in the spatial
Fourier domain. In future work it may be useful to apply filtering
using spherical harmonics, as was done by Kholikov (2004).
There is a small oscillation amplitude reduction in the magnetic
features. It was pointed out by Rajaguru et al. (2006) that this can
cause travel-time errors, when coupled with spacetime filters. A
test was performed in which an amplitude correction was applied
before filtering. The resulting kernels were different by less than
1 s from those presented below. In future work it will be useful to
apply this amplitude correction routinely.

The kernel for the feature method is derived by averaging the
travel times near 2475 magnetic features. To get the right units
and magnitude for the kernel, the average travel-time map is
divided by the average magnetic flux in a feature, 0.6 kG Mm2.
Figure 3a shows the feature-method kernel. Errors for this kernel
are derived from the scatter of the 73 different orientations.

2.2. Deconvolution Method

The deconvolution method of measuring the kernel is con-
ceptually more difficult but yields both higher resolution and

Fig. 2.—Filter (dotted line), unfiltered spectrum (dashed line), and filtered
spectrum (solid line) at spherical harmonic degree l ¼ 1047. The spectra have
been normalized to unity at the peak. The peak near 3.2 mHz is the f-mode and
that near 3.9 mHz is the p1-mode. The filter has a flat part and a cosine bell part.
The width of both parts is a function of the frequency separation of the f- and
p1-modes, ��(l ), a function of the degree l. The published frequencies of
Bachmann et al. (1995) were used. The full width of the flat part of the filter is
�� /2, and the cosine bell falls from 1 to 0 also in �� /2.
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better signal-to-noise ratio, as all of the data are being used in an
optimum way. If it is assumed that the perturbation in equa-
tion (1) is given by the absolute value of the line-of-sight mag-
netic field, then the observed travel-time map is given by the
desired kernel convolved with the observed magnetogram. Tak-
ing the two-dimensional spatial Fourier transform and making
use of the convolution theorem, a simple relation between the
observables is obtained:

Õ kx; ky
� �

¼ Ã kx; ky
� �

B̃ kx; ky
� �

; ð4Þ

where Õ is the Fourier transform of the observed travel-time
map, Ã is the Fourier transform of the kernel, B̃ is the Fourier
transform of the magnetogram, and kx, ky are the components of
the horizontal wavevector k.

For each of the 73 orientations �, the travel-time image is ro-
tated so that the kernel is always aligned in the x-direction. The
magnetogram is similarly rotated. Therefore, for each of the 73
orientations and 102 time intervals, the values of Ã are constant

while the magnetic transform values B̃ cover a wide range of
values. At each value of k, a linear least-squares problem is solved
to obtain the real and imaginary parts of Ã and the errors. To obtain
the errors, it was assumed that the scatter of the values of Õ at a
given k is due to randomGaussian noise,which seems reasonable.
That this procedure actuallyworks is shown by examining the real
part of the derived coefficients of Ã in Figure 4. The smooth lobes
visible for kR� < 1000 have a reasonable signal-to-noise ratio, as
seen in Figure 5, where we have plotted the square root of the ratio
of the azimuthally averaged mean-squared signal to that of the
error. There seems to be no useful information in the imaginary
part of the transform, so it is not used.
We present two versions of the kernel derived from these

transform coefficients. An optimal version will be derived in aFig. 3.—Observed kernels by (a) the averaged magnetic feature method; and
(b) the relatively unfiltered deconvolution method. The coordinates of the two
observation points are (x ¼ �5 Mm, y ¼ 0) and (x ¼ 5 Mm, y ¼ 0).

Fig. 4.—Real part of the spatial Fourier transform of the kernel. The wave-
numbers kx, ky have been multiplied by the solar radius to give the number of
waves in the circumference of the Sun. The transform coefficients become noisy
for kR� > 1000.

Fig. 5.—Estimate of the signal-to-noise ratio in the spatial Fourier domain,
computed as the square root of the ratio of the azimuthally averaged mean-
squared signal to the azimuthally averaged mean-squared error.
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future paper. In the first, relatively unfiltered version, the coef-
ficients with kR� > 2750 are zeroed before the inverse Fourier
transform is computed. This version is shown in Figure 3b. The
units were obtained by dividing by the area of an individual pixel,
(0:41 Mm)2. Errors have been determined by using the errors of
the transform values in a Monte Carlo calculation to get errors
in the x-y domain. The second version of the kernel is derived by
filtering the transform coefficients based on the signal-to-noise
ratio in Figure 5. A smooth truncation of the transform is done
centered at kR� ¼ 1380, the location where the signal-to-noise
ratio falls to approximately 1. The truncation goes from1 to 0 over
a range of kR� ¼ 260. This filtered version of the kernel is com-
pared with the model (derived in x 3) in Figure 8.

The deconvolution kernel has more resolution than the feature-
averaged one, as one might expect. A comparison of the two
versions of the deconvolution kernel with the feature kernel at
y ¼ 0 is shown in Figure 6. The peak signal-to-noise ratios of the
kernels are 168 for the filtered deconvolution kernel, 72 for the
unfiltered deconvolution kernel, and 27 for the feature kernel.

The elliptical features present in the theoretical damping ker-
nel (Fig. 1b) are also present in the measured kernel. These fea-
tures are due to scattering (Gizon & Birch 2002). This suggests
that the observed kernel is not dominated by the effect of local
changes in wave sources (Fig. 1a), which do not cause these
features. The elliptical features are better seen in a cut through
the image at x ¼ 0 in Figure 7.

3. A SIMPLE MODEL

In this section we develop a simple phenomenological model
to explain the basic features of the travel-time observations. We
assume that scattering from a small magnetic element can be
described as a combination of monopole and dipole scattering.
This assumption is motivated by studies of the interaction of
waves with slender magnetic tubes (e.g., Bogdan et al. 1996) that
show that these two modes are dominant. We then adjust the
amplitudes and phases of these two types of scattering in order to
obtain a model that reproduces the observations.

We begin from the simple f-mode example described in detail
in Gizon & Birch (2002). This study provides a method to
compute the first-order travel-time perturbation due to scattering

in the horizontal plane, given an expression for the perturbation
to the wave operator, �L (we keep the notations of Gizon &
Birch 2002). Here we choose very simple phenomenological
models for the monopole and dipole scattering operators act-
ing on an incoming wave packet (velocity v). For the case of
monopole scattering we introduce the operator �Lmono, which
we define as

�Lmonov ¼ m rð Þei�monokw: ð5Þ

In the above equation, k is the horizontal wavenumber, v is
the wave velocity, and w is the vertical component of v. The
function m(r) gives the local strength of the monopole scat-
tering and �mono the phase of the scattering, which we assume
is independent of position. For the case of dipole scattering we
use

�Ldipv ¼:h = d rð Þei�dipvh
� �

: ð6Þ

In the above equation the subscript h denotes the horizontal
part. The function d(r) gives the local strength of the dipole
scattering and �dip the phase. The phases �mono and �dip allow
us the freedom to adjust the phases of the monopole and dipole
scattered waves. Using the model of Gizon & Birch (2002) we
can obtain the first-order sensitivity of the f-mode travel times
to the functions m(r) and d(r). These linear sensitivity kernels,
Km and Kd , to the f-mode mean travel times satisfy

��mean r;#ð Þ ¼
Z Z

dr0 Km r0� r;#ð Þm r0ð Þ

þ
Z Z

dr0 Kd r0 � r;#ð Þd r0ð Þ: ð7Þ

The variables r, r0, and # are the same as in equation (1).
By comparing the predictions of the simple phenomenologi-

cal model described in the previous paragraph with the observed
travel times, we can estimate the free parameters in the model.
We write the model kernel at fixed # as

Kmodel r;�; �mono; �dip

� �
¼ A Km rð Þ þ �Kd rð Þ½ �: ð8Þ

Fig. 6.—Cut through the observed kernels in the x-direction at y ¼ 0. The
solid curve is the more strongly filtered deconvolution kernel, and the dashed
curve is the relatively unfiltered deconvolution kernel. The dotted curve is the
feature kernel. Characteristic 5 � errors are shown near the minima at x ¼
�6Mm. The vertical lines near x ¼ �5Mm denote the locations of the two ob-
servation points.

Fig. 7.—Cut through the observed kernels in the y-direction at x ¼ 0. The
solid curve is the more strongly filtered deconvolution kernel, and the dashed
curve is the relatively unfiltered deconvolution kernel. The dotted curve is the
feature kernel. Characteristic 5 � errors are shown leftward of the center.
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Note that Km depends on �mono and Kd depends on the �dip. The
ratio between the dipole and monopole contributions is given
by �. For each value of � and the phases we fix the amplitude A
by demanding that the rms, over r, of the model and the data are
the same. We then determine �, �mono, and �dip by doing a least-
squares fit to the data; i.e., we minimize the difference between
the observed kernel, Kdata, and the model kernel

X �; �mono; �dip

� �
¼
X

r Kmodel r;�; �mono; �dip

� �
� Kdata rð Þ

� �2
ð9Þ

over the three free parameters: �, �mono, and �dip. The fitted
value of � ¼ 0:9 together with the value of A obtained by
matching the overall amplitude of the observed kernel imply an
amplitude of d that is 1:5 ; 10�4 s�2 Mm�2 kG�1 and an am-
plitude of m that is 1:4 ; 10�4 s�2 Mm�2 kG�1.

Figure 8 shows a comparison between the model described
in the previous paragraph and the observed kernel. The model
reproduces the main features of the observed kernel. The ellipse-
and hyperbola-shaped features are of roughly the same ampli-
tude and in the same locations. The observed kernel has some
fine structure along the line y ¼ 0 that is not reproduced by the
model. This may indicate that in the model the bandwidth of the
scattered wave is too large.

4. CONCLUSIONS AND FUTURE WORK

The kernel for small magnetic features to make travel-time
variations has been measured by two techniques. The deconvo-
lution technique is superior to the average-feature technique as

it gives better resolution and peak signal-to-noise ratio. A simple
model has been presented for the scattering from small magnetic
elements that is similar to the observed kernel. It is likely thatmore
detailed modeling will yield valuable information about the
structure of magnetic features in the solar atmosphere.
This paper presents the first observational evidence to suggest

that it is appropriate to use the Born approximation to compute
kernels (as opposed to the ray approximation). The observed
hyperbolic features confirm that it is important to take into ac-
count scattering of the waves coming from distant source loca-
tions (as opposed to the single-source approximation; Gizon &
Birch 2002).
There are a number of potential extensions to the present

work. P-modes can be used in addition to f-modes. The p-modes
will have kernels that are three-dimensional structures of which
we could only measure the surface component. This may be
enough to give information about the structure of the ‘‘point’’
scatterers that are chosen. The time difference can be measured
in addition to the mean travel time. Other surface perturbations
can be used, for example, the granulation. The scattering from
granulation can be studied from the present data using the ob-
served intensity signal. It may be possible to measure the kernels
for mode mixing by cross-correlating the f-mode signals with
those for the p1 ridge.

The MDI project is supported by NASA contract NAG5-
13261 to Stanford University. SOHO is a project of international
cooperation between ESA and NASA. The work of A. C. B. was
supported by NASA contract NNH04CC05C. We wish to thank
P. Milford for useful comments on the manuscript.

Fig. 8.—Comparison of (a) the more strongly filtered deconvolution kernel with (b) the model kernel. The kernels are plotted using the same gray scale. The model
reproduces many of the features of the measured kernels; in particular the ellipse- and hyperbola-shaped features appear in roughly the same places with the same
amplitudes. Note that the observed kernel contains more detailed structure along the line y ¼ 0 than the model.
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