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Solar oscillations consist of a rich spectrum of internal acoustic waves and surface gravity
waves, stochastically excited by turbulent convection. They have been monitored almost
continuously over the last ten years with high-precision Doppler images of the solar
surface. The purpose of helioseismology is to retrieve information about the structure
and the dynamics of the solar interior from the frequencies, phases and amplitudes of
solar waves. Methods of analysis are being developed to make three-dimensional images
of subsurface motions and temperature inhomogeneities in order to study convective
structures and regions of magnetic activity, like sunspots.
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1. Solar Oscillations

The five-minute solar oscillations were discovered by Leighton, Noyes and Simon1

and interpreted as deep standing acoustic waves by Ulrich.2 Improved observations

by Deubner3 confirmed that power is concentrated along discrete ridges in wave

number-frequency space, as predicted by Ulrich’s theory. The source of excitation

of solar oscillations is known to be near-surface turbulent convection.4,5 Standard

texts on solar and stellar oscillations are listed in Refs. 6–9.

The fundamental data of modern helioseismology are Doppler images of the line-

of-sight component of velocity, Φ(x, t), where t is time and x is a position vector

on the Sun’s surface. The two main datasets are provided by the Global Oscillation

Network Group (GONG, Ref. 10) and by the Michelson Doppler Imager (MDI,

Ref. 11) aboard the ESA/NASA SOHO spacecraft in a halo orbit around the L1

Sun–Earth Lagrange point since 1996. The MDI Dopplergrams are obtained by

combining four filtergrams in the wings and core of the Ni 6788 Å absorption line,

formed just above the photosphere; images are recorded on a 1024 × 1024 pixel

CCD camera at the cadence of one per minute.

The data are best studied in wave number-frequency space. Under the assump-

tion that the Sun’s surface is locally plane, we can extract the harmonic components
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Fig. 1. Cut at ky = 0 through a three-dimensional power spectrum of solar oscillations, P (k, ω),
obtained by the MDI-SOHO instrument in its high-resolution mode of operation. This power
spectrum is an average over 8 individual power spectra (the total period of observation is 8 times
T = 4 hr). The wavenumber is given in units of the inverse solar radius. The dashed lines indicates
the acoustic cutoff frequency at 5.3 mHz, above which acoustic waves are not trapped inside the
Sun.

of the signal by application of a 3D Fourier transform:

Φ̃(k, ω) =

∫

A

d2x

∫ T

0

dt Φ(x, t)eik·x−iωt, (1)

where A is a local area on the Sun, k = (kx, ky) is the horizontal wavevector, and

ω = 2πν is the angular frequency. We adopt the convention that the x coordinate

points prograde, toward the west limb, while y points toward the north pole. Figure 1

shows a cut at ky = 0 through the power spectrum P (k, ω) = |Φ̃|2 obtained from

a time series of MDI Doppler images. Images were previously shifted in space to

remove the main component of solar rotation.

Power is distributed along distinct ridges labeled by an integer n, known as the

radial order, which corresponds to the number of nodes of the wave eigenfunctions

counted in the radial direction (from the surface to the center of the Sun). The

lowest frequency ridge with n = 0 corresponds to the fundamental (f) modes of

solar oscillations. The f modes are identified as surface gravity waves, with nearly

the dispersion relation for deep water waves, ω2 = gk, where g = 274 m s−2 is the

Fig. 1. Cut at ky = 0 through a three-dimensional power spectrum of solar oscillations, P (k, ω),
obtained by the MDI–SOHO instrument in its high-resolution mode of operation. This power
spectrum is an average over 8 individual power spectra (the total period of observation is 8 times
T = 4 hr). The wave number is given in units of the inverse solar radius. The dashed line indicates
the acoustic cutoff frequency at 5.3 mHz, above which acoustic waves are not trapped inside the
Sun.

of the signal by application of a 3D Fourier transform:

Φ̃(k, ω) =

∫

A

d2x

∫ T

0

dt Φ(x, t)eik·x−iωt , (1)

where A is a local area on the Sun, k = (kx, ky) is the horizontal wave vector,

and ω = 2πν is the angular frequency. We adopt the convention that the x co-

ordinate points prograde, toward the west limb, while y points toward the north

pole. Figure 1 shows a cut at ky = 0 through the power spectrum P (k, ω) = |Φ̃|2

obtained from a time series of MDI Doppler images. Images were previously shifted

in space to remove the main component of solar rotation.

Power is distributed along distinct ridges labeled by an integer n, known as the

radial order, which corresponds to the number of nodes of the wave eigenfunctions

counted in the radial direction (from the surface to the center of the Sun). The

lowest frequency ridge with n = 0 corresponds to the fundamental (f) modes of

solar oscillations. The f modes are identified as surface gravity waves, with nearly

the dispersion relation for deep water waves, ω2 = gk, where g = 274 m s−2 is the

gravitational acceleration at the Sun’s surface and k is the horizontal wave number.

The f modes propagate horizontally. All other ridges, denoted by pn, correspond

to acoustic modes, or p modes. The restoring force for p modes is pressure. The

ridge immediately above the f mode ridge is p1, the next one p2, and so forth. We
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may denote by ω = ωn(k) the dispersion relation associated with the nth ridge of

power. Modes with smaller values of k and larger n penetrate deeper inside the

Sun. An essential physical property of acoustic waves is that modes with similar

values of the horizontal phase speed ωn(k)/k propagate to similar depths inside the

Sun. For frequencies above the acoustic cutoff frequency (5.3 mHz, dashed line),

acoustic waves are not trapped inside the Sun but propagate freely outward. We

note that for k < 150/R�, where R� = 696 Mm is the solar radius, it is not

correct to assume a plane parallel geometry: spherical harmonics transforms should

be implemented instead of spatial Fourier transforms, as is done in global mode

helioseismology.9

The theory of solar oscillations has been discussed at length elsewhere. In local

helioseismology, it is important to consider wave propagation through generic so-

lar models, including models with local inhomogeneities. In this paragraph and for

the sake of simplicity only, we assume that no steady background flow is present.

Solar oscillations are described by the displacement vector ξ(r, t) of a fluid parcel

that would have been at location r and time t had there been no wave motion.

All physical quantities (e.g. density) are expanded into a steady background value

(e.g. ρ) and a wave perturbation (denoted with a prime, e.g. ρ′). In the case of

small-amplitude oscillations, which is a good approximation, only first-order per-

turbations are retained. The continuity equation reads

ρ′ + ∇ · (ρξ) = 0 . (2)

Ignoring the perturbation to the gravitational potential (Cowling approximation),

the momentum equation is

ρ∂2
t ξ = −∇p′ + ρ′g , (3)

where p′ is the pressure perturbation and g = (∇p)/ρ is the gravitational acceler-

ation. We note that if the background model includes a magnetic field B, then the

perturbation to the Lorentz force, F[ξ] = (∇×B)×B′/4π+(∇×B′)×B/4π, must

be added to the R.H.S. of Eq. (3). For the energy equation, we assume adiabatic

wave motion (no heat losses):

δp

p
= Γ1

δρ

ρ
= −Γ1∇ · ξ , (4)

where Γ1 is the first adiabatic exponent, δp = p′ + ξ · ∇p and δρ = ρ′ + ξ · ∇ρ are

the Lagrangian perturbations in pressure and density respectively. Combining the

above equations, we obtain a single differential equation for ξ:

−ρ∂2
t ξ + ∇(Γ1p∇ · ξ + ξ · ∇p) − (∇ · ξ + ξ · ∇)∇p + ρ(ξ · ∇)g = 0 . (5)

Had we considered a medium with a background flow, v, then the time derivative

∂t in the above equation would have been replaced by ∂t + v · ∇, as explained in

Ref. 12. We note that, in the upper layers of the Sun, the term ρ(ξ ·∇)g can usually

be dropped because variations in g are slow there.
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The point of the previous paragraph was to show that it is feasible to write

down a differential operator, L, that controls the evolution of the fluid displacement

associated with free, small-amplitude oscillations of the Sun. Our model, however,

is incomplete as it ignores the excitation and damping of oscillations by turbulent

convection, a difficult problem. It is customary to add a source term, S, to the

R.H.S. of Eq. (5),

L[ξ] = S(r, t) , (6)

and to tune S empirically to obtain an approximate match between the model and

observed power spectra.13 At the same time, a simplified damping term is also

added to L to reproduce the linewidths of the modes in the power spectrum.13 The

function S should be understood as the realization of a random process.

By definition, the observable is the line-of-sight component of velocity at the

solar surface: Φ(x, t) = psf ⊗ (` · ∂tξ), where ` is a unit vector that points toward

the observer and psf⊗ denotes the convolution of the signal by the point spread

function of the telescope.

2. Methods

Local helioseismology is a set of tools to make three-dimensional images of the solar

interior. The most popular methods of analysis are time-distance helioseismology,

ring-diagram analysis, Fourier–Hankel decomposition, seismic holography, and di-

rect modeling (see Ref. 14 for a general review). Here we shall only explain the

basic principle of time-distance and ring-diagram analyses.

Time-distance helioseismology15 consists of measuring the travel times of wave

packets propagating through the solar interior between any two points on the solar

surface. The travel times between locations x − ∆/2 and x + ∆/2 are extracted

from the cross-covariance function

C(t) =

∫ T

0

Φ(x −∆/2, t′)Φ(x + ∆/2, t′ + t)dt′ . (7)

The cross-covariance function is a phase-coherent average of the random oscillations:

it can be seen as a solar seismogram. The travel time τ(x,∆) for waves moving

from x−∆/2 to x+∆/2 is measured by fitting C(t > 0) with a Gaussian wavelet.

A travel time anomaly contains the seismic signature of buried inhomogeneities

within the proximity of the ray path that connects the two surface locations. Flows

in the Sun break the symmetry between τ(x,∆) and τ(x,−∆), while sound speed

perturbations affect the mean travel time. An inverse problem must be solved to

infer the 3D structure and dynamics of the solar interior.

Ring-diagram analysis16 consists of studying local power spectra of solar os-

cillations, P (k, ω;x), computed over small patches of the solar surface around a

location x (unlike the power spectrum of Fig. 1, which was computed over a large

fraction of the solar disk). The frequencies of the modes of solar oscillations are

carefully measured from any given local power spectrum. The small differences
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between the measured mode frequencies and the theoretical frequencies from a ref-

erence solar model provides information about the solar interior in the vicinity of x.

Ring-diagram analysis has been particularly successful at mapping horizontal flows

in the upper convection zone. The effect of a slowly-varying horizontal flow v is to

Doppler shift the power spectrum by an amount k · v:

P (k, ω;x) = P0(k, ω − k · v) , (8)

where P0 is the reference power spectrum with v = 0. In practice, for a general flow

v(r) that varies with depth, the Doppler shift will depend on the radial order. Once

again, an inverse problem must be solved to infer the variation of solar properties

with position in the solar interior.

In order to do linear inversions of helioseismic data, it is necessary to first solve

the linear forward problem. The linear forward problem is to compute the first-order

effect (prefix δ) of small perturbations to a reference solar model (subscript 0). The

zero-order reference solar model is usually invariant by horizontal translation, has

zero mean flow, and no magnetic field. In general, the linear forward problem can

be written as

δd(x) =
∑

α

∫

�

d3rKα(r;x)δqα(r) . (9)

In this equation, δd denotes the value of a particular seismic parameter (travel

time, ring fit parameter, etc.) minus the value of this parameter in the reference

solar model. The sum over the index α is a sum over all possible types of physical

quantities qα (sound speed, density, flows, etc.). The kernel function Kα(r;x) gives

the sensitivity of δd(x) to the perturbation δqα(r) at position r in the solar interior.

So far, essentially all studies assume that the perturbations to the solar model, δqα,

are time-independent over the time duration during which the observations are

made.

The main step involved in the derivation of the kernels Kα is the calculation of

the first-order perturbation to the wave displacement, δξ. The change in the solar

model, through the δqα, are included in the perturbed wave operator, δL. The δqα

may also imply a change in the source function, δS. For example, a magnetic field

or a flow may affect the small-scale convection that drives the solar oscillations.

The calculation of δξ, according the first-order Born approximation,

L0[δξ] = −δL[ξ0] + δS , (10)

is developed in full detail in Refs. 13–17. Equation (10) shows that the Born ap-

proximation is an equivalent-source description of wave interaction. An equally good

alternative to the Born approximation is the Rytov approximation.20

Figure 2 shows a kernel function obtained by Birch, Kosovichev and Duvall13

for the sensitivity of travel-time measurements (δd = δτ) to a local perturbation

δqα = δc2/c3, where c = (Γ1p/ρ)1/2 is the sound speed. The kernel values are close

to zero along the ray path (infinite frequency limit), which led geophysics to refer

to such kernels as banana-doughnut kernels.18
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Fig. 2. Cut through a three-dimensional kernel giving the sensitivity of travel times to sound
speed perturbations (δqα = δc2/c3). The scattering of acoustic waves by sound speed inhomo-
geneities was calculated under the first-order Born approximation. The ray path (infinite frequency
limit) is given by the black line. The distance between the two points at the surface is ∆ = 20 Mm
and the units of the kernel are 10−2 Mm.

The sensitivity of travel times extends much beyond the geometrical ray path

that connects the two points at the surface. The central lobe of a sensitivity kernel

is called the first Fresnel zone: a scatterer placed on the boundary of the first Fresnel

zone causes a phase difference between the direct and scattered waves of π. In the

case of a uniform medium, the width of the Fresnel zone is approximately given

by LF ∼ (λ∆)1/2, where λ is the dominant wavelength of the solar oscillations. To

illustrate this point, we may take as a reference for λ the wavelength of an f mode

near 3 mHz:

LF ∼ 10 Mm

(

λ

5 Mm

)1/2(
∆

20 Mm

)1/2

. (11)

The width of the first Fresnel zone does exceed the size of some of the solar con-

vective structures that leave a signature in the travel-time measurements. To be

more precise, finite-wavelength effects become very important when the wavelength

of the underlying perturbations in the Sun is less than 2LF. We note that finite-

wavelength tomography has received a lot attention in geophysics in the past few

years, in particular to resolve plumes in the Earth’s mantle.19 One of the differences

between helio- and geo-seismology is that in the Sun waves are excited stochastically

over the whole solar surface, leading to more complex sensitivity kernels.

The linear inverse problem of local helioseismology, which consists of invert-

ing for the δqα from a set of measurements δd, is relatively well understood. Two

standard methods are used: regularized least squares (RLS, Ref. 21) and optimally

localized averaging (OLA, Ref. 22). The multi-channel deconvolution algorithm sig-

nificantly speeds up RLS inversions.23 In general, inversions must take into account

the fact that the data errors are correlated.20,24,25
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3. Convection

Motions on the solar surface display two specific scales: granulation and supergran-

ulation. Granules, with a typical scale of 1.5 Mm, are well understood as a convec-

tive phenomenon thanks to realistic numerical simulations. Supergranules, however,

have remained puzzling since their discovery by Leighton, Noyes and Simon1: there

is no accepted theory that explains why convection should favor a 30 Mm scale.

Supergranular cells expel the magnetic flux from the regions of fluid motion and

concentrate it into ropes at the cell boundaries to form the quiet Sun magnetic

network.

The simplest way to detect supergranulation with time-distance helioseismol-

ogy is to measure, with a cross-correlation technique, the time it takes for solar

waves to propagate between any given point on the solar surface and a concen-

tric annulus around that point. The difference in travel times between inward and

outward propagating waves is a measure of the local divergence of the flow.26 In

the case of surface-gravity waves (f modes), the travel-time difference is directly

sensitive to the horizontal divergence of the flow velocity in the top 2 Mm below

the surface, without inversion.27 Figure 3 shows the divergence signal (inward mi-

nus outward travel times) obtained by analyzing a 12-hr long time series of MDI

full-disk Doppler velocity images tracked at the Carrington rate to remove the main

component of solar rotation. A white, or positive signal, corresponds to a horizontal

outflow. From the size of the features present and their locations with respect to the

Fig. 3. Map of the horizontal divergence of the flows in a 1-Mm deep layer below the photosphere.
Center-to-annulus f-mode travel-time differences are given in units of second (observation duration
T = 12 hr, annulus radius ∆ = 15 Mm, MDI full-disk data). A positive signal corresponds to a
positive divergence.
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magnetic network, supergranulation is identified as the main contribution to the

signal. Compared to the Doppler line-of-sight velocity, the main advantage of the

helioseismic divergence signal is that it is essentially free of systematic variations

across the field of view, which is an important condition to study the evolution of

the pattern. Divergence maps can also be constructed with a technique known as

seismic holography.28

The evolution of the pattern of convection has been studied using long sequences

(two to three months each year) of divergence maps, like the one shown in Fig. 3.

Each map covers a region of size 120◦ × 120◦ centered on the solar disk. This

means that a feature co-rotating with the Sun can be observed continuously for

about 9 days. Such long time series enabled Gizon, Duvall and Schou29 to resolve

unexpected oscillations in the 3D Fourier spectrum of the divergence signal (with

frequencies in the range 1–2 µHz) and excess power in the prograde direction. These

wave-like properties have not been explained yet, although an interesting analysis

by Green and Kosovichev30 suggests that convection in a vertical shear flow could

take the form of traveling waves. From the autocorrelation of the divergence signal,

the lifetime of supergranulation is measured to be about 2 days.

In addition to the horizontal divergence, div = ∂xvx + ∂yvy, it is also possible

to measure separately the two horizontal components of the vector flow (by split-

ting the annulus into quadrants), from which an estimate of the vertical vorticity,

curl = ∂xvy−∂yvx, can be derived. After removing the large-scale vorticity31 due to

differential rotation and meridional circulation, a small correlation between div and

curl is detected,27,32 which is found to be proportional to Ω(λ) sin λ, where Ω(λ)

is the angular velocity of the Sun at latitude λ. This latitudinal variation of the

correlation is precisely what is expected of the effect of the Coriolis force on convec-

tion. In the northern hemisphere, supergranular cells rotate preferentially clockwise

where the horizontal divergence is positive, while they rotate preferentially counter-

clockwise in the convergent flows near the sinks. The sense of circulation is reversed

in the southern hemisphere. The coupling between convection and rotation is weak

(the correlation coefficient between div and curl is less than 2%), in relatively good

agreement with numerical simulations.33,34

In addition, both time-distance helioseismology and ring diagram analysis have

revealed the existence of long-lived flow patterns on scales that are much larger

than supergranulation,35,36 which may be related to the largest scales of deep con-

vection.37

4. Sunspots and Active Regions

Thomas, Cram and Cram38 first suggested that solar oscillations could be used to

probe the internal structure of sunspots. Since then, observations have shown that

the frequencies, phases, and amplitudes of solar oscillations are perturbed in regions

of enhanced magnetic activity.39 Sunspots are known to absorb incident p-mode

energy,40 introduce phase shifts between the incident and transmitted waves,15,41
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Fig. 4. Acoustic imaging of active region NOAA 7978 using a 33-hr MDI time series of Doppler
maps. The panels shows reduced p-mode power, enhanced p-mode absorption (deficit of outgoing
intensity), and decreased phase and envelope travel times at the location of the active region. The
data were filtered with a Gaussian filter centered around frequency 3.5 mHz. The acoustic power
is reduced by a factor of four in the central sunspot. The size of the aperture used is 2–6◦ (a 2◦

circle is shown in the upper left map). The dimension of each map is 24.0◦ in longitude and 24.7◦

in latitude.

and cause mode mixing.42 All these observations inform us about the conditions

inside and in the immediate vicinity of sunspots: temperature and density anoma-

lies, fluid motions, and the magnetic field.43–45 High-frequency acoustic waves can

also be used to map the topography of the magnetic fields above sunspots, in the

chrosmosphere.46

Figure 4 shows results obtained by Chou47 with acoustic imaging, a technique

used to reconstruct the seismic signal at any target point on the solar surface.

The reconstructed signal contains information about the amplitude and the phase
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of wave packets converging toward the target point or diverging from that point.

Active regions introduce local changes easily detectable in the maps of the recon-

structed outgoing intensity. Waves are absorbed by active regions as evidenced by

the deficit of outgoing acoustic intensity. In this example, the active region also

introduces phase-time shifts as big as 1.5 min, i.e. a significant fraction of the wave

oscillation period.

The forward and inverse problems of sunspot seismology present many chal-

lenging issues. The main difficulties are nonlinear aspects of wave propagation,

radiative transfer in magnetized plasmas, and the relationship between velocity

measurements in sunspots and real fluid motions. The complexity of the problem

is evident from numerical studies of the propagation of p and f modes through

model sunspots and their coupling to magnetic waves.48,49 It should be noted that

magnetic perturbations are not small near the solar surface50,51: the first Born ap-

proximation cannot be applied there. Only deeper inside the Sun, can magnetic

effects be treated as small perturbations.52

A number of simplifications have been made to interpret the observations and

obtain approximate answers. The first assumption which is commonly used is that

structural perturbations inside sunspots are small (not quite correct, as mentioned

just above). In addition, it is often assumed that the travel-time shifts, scattering

phase shifts, or local mode frequency shifts are caused by sound speed perturbations

(indirect effect of the magnetic field). Under these simplifying assumptions, a linear

inverse problem can be solved to infer subsurface sound-speed perturbations.44 One

of the latest inversions by Kosovichev54 using high-resolution MDI–SOHO data, is

shown in Fig. 5. It is found that the sound speed is lower just below the sunspots

(probably indicating a lower temperature), while the sound speed is higher at depths

greater than about 4 Mm. Deeper than about 15 Mm, the seismic signature of

sunspots fades away. These findings indicate that sunspots are rather shallow and

that the emerged magnetic flux is somehow disconnected from its root in the deep

convection zone.55 Figure 5, a vertical cut through a pair of sunspots with opposite

polarities, reveals a very interesting loop-like structure, which may tell us something

about the underlying magnetic topology.

Efforts are under way to infer other quantities than the sound speed below

sunspots. Basu, Antia and Bogart56 performed a depth inversion of local frequency

shifts simultaneously for the sound speed and the adiabatic exponent. A major goal

is to directly image the magnetic field. This has not been accomplished yet as it

is not easy to separate unambiguously magnetic perturbations from other pertur-

bations, such as temperature or density anomalies. Piercing through the surface

will require that we know how to correct for the strong phase shifts introduced by

the surface density drop (Wilson depression) and the surface magnetic field.57–59

Ultimately, nonlinear inversions of seismic measurements may be necessary. A first

attempt is due to Crouch et al.
60 using a genetic algorithm to adjust the param-

eters that control the radial structure of sunspot models. A major improvement
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Fig. 5. Vertical cut through the 3D sound-speed variations associated with active region NOAA
10488. The depth of the box is 48 Mm, the horizontal size is 540 Mm. The sound-speed scale
ranges from −1 km s−1 (blue) to 1.5 kms−1 (red).

in our understanding of wave propagation through strongly magnetized regions is

expected from realistic numerical simulations.

5. Thin Magnetic Tubes

Outside active regions, in the quiet Sun, the photosphere magnetic fields appear

to be clumped into intense flux tubes with typical field strength of order 1 kG

and diameters of about 100 km. It is well known that flux tubes support various

modes of oscillation: the Alfvén modes (twisting motion), the sausage modes (prop-

agating change in the cross-section of the tube), and the kink modes (bending of

the tube). The interaction of acoustic waves with thin flux tubes, i.e. tubes with

diameters much less than the wavelengths, has been studied extensively. In partic-

ular, it is believed61,62 that scattering of acoustic waves by flux tubes contributes

to the observed63,64 damping rates and frequency shifts. Local helioseismology has

the potential to provide observational tests for some of these ideas. A promising

approach, pioneered by Duvall, Birch and Gizon,65 is to study small magnetic fea-

tures averaged over 4-hr time intervals. Compared to sunspots, magnetic network

elements have the advantage of being relatively simple magnetic configurations. In

addition, they are so many that a statistical treatment is possible. It was observed

that the decrease in f -mode travel time caused by an average magnetic feature is

2 s kG−1 at most. It is hoped that such data will help us understand wave scattering

by slender vertical flux tubes.
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6. Mass Flows and Magnetism

A distinction should be made between flows in the immediate vicinity of sunspots,

and small-amplitude, extended flows around large active regions. Duvall et al.
43

discovered travel-time shifts in sunspots that are consistent with strong, 1 km s−1

downflows, several Mm below the surface. Near the surface, a 500 m s−1 horizontal

outflow from the center of sunspots, known as the moat flow, is observed.28,66,67

Zhao, Kosovichev and Duvall68 discovered mass motions across a sunspot at a depth

of about 10 Mm, as well as a collar flow, which may stabilize the sunspot.69

On a much larger spatial scale (tens of heliographic degrees), long time averages

of surface flow maps reveal weak, 50 m s−1 horizontal flows that converge toward

large complexes of magnetic activity.35,36 Such a surface inflow may have its origin in

the decrease of gas pressure in magnetized regions.70 Deeper inside the Sun (10 Mm

below the surface), inversions point to the existence of 50 m s−1 horizontal flows

diverging away from active regions,71,72 suggesting the existence of an extended

toroidal cell.73 Using a mass conservation constraint, Komm et al.
74 derived the

vertical component of velocity and the kinetic helicity density, which take the largest

values in active regions.

Local helioseismology has also been particularly successful at measuring global-

scale motions in the Sun: rotation and meridional circulation (see Ref. 73 and

references therein). The localized, organized motions around active regions that

have just been described introduce an 11-yr solar-cycle variation in the longitudinal

average of the meridional circulation, which could affect the large-scale transport

of the surface magnetic flux.

7. Farside Imaging

Lindsey and Braun75 demonstrated that acoustic waves observed on the front side

(Earth side) of the Sun can be used to image large active regions on the far side of

the Sun. Farside helioseismic imaging, a special case of phase-sensitive holography,

uses long-wavelength internal acoustic waves that leave the front side, bounce once

off the surface, then bounce from a target location (on the farside), and bounce

again on the way returning to the front side where we can observe them again. This

2 + 2 skip geometry (Fig. 6) is designed to map regions not too distant from the

antipode of the center of the visible disk. Active regions on the farside introduce

travel-time shifts of the order of ten seconds with respect to the quiet Sun. For

focus positions closer to the limb, Braun and Lindsey76 proposed to use a 1+3 skip

geometry. By combining the 2 + 2 and 1 + 3 skip geometries, Oslund and Scherrer

(2006) produced maps of the entire farside (see Fig. 6). Obviously, farside imaging

has important implications for space weather predictions.

8. Conclusion

This short overview of the methods and results of helioseismic tomography will

hopefully convince the reader of the richness of this exciting field of research. Local
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Fig. 6. Left: Multi-bounce ray paths connecting the front side (Earth side) and the farside of the
Sun. Acoustic waves that bounce off an active region situated on the farside suffer a measurable
phase shift. Maps of the full farside are obtained by combining the 2–2 (red), 1–3 (green), and 3–1
skip geometries. Right: Farside imaging of the Sun on 22 October 2003 (top) and 24 October 2003
(bottom). A large active region can be seen on October 22 on the farside just before it rotates
onto the front side of the Sun on October 24. The black curve is the boundary between the far
and front sides.

helioseismology has revealed unexpected aspects of the dynamics of supergranula-

tion, wave-speed anomalies and complex flow patterns below sunspots and active

regions, and magnetic activity on the farside of the Sun. As mentioned throughout

this text, many challenging issues will have to be addressed before these discoveries

can be fully be trusted. Future progress is likely to come from improved models

of the interaction of seismic waves with subsurface inhomogeneities and validation

through realistic numerical simulations. On the observational side, the next tech-

nological steps are NASA’s Solar Dynamics Observatory to be launched in 2008

(improved spatial resolution) and the Solar Orbiter mission of ESA scheduled for

2015 (out of the ecliptic views of the polar regions of the Sun).
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