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ABSTRACT

With the aim of studying magnetic effects in time-
distance helioseismology, we use the first-order Born ap-
proximation to compute the scattering of acoustic plane
waves by a magnetic cylinder embedded in a uniform
medium. We show, by comparison with the exact solu-
tion, that the travel-time shifts computed in the Born ap-
proximation are everywhere valid to first order in the ratio
of the magnetic to the gas pressures. For arbitrary mag-
netic field strength, the Born approximation is not valid in
the limit where the radius of the magnetic cylinder tends
to zero. This contribution is a summary of a paper pub-
lished in the Astrophysical Journal.
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1. INTRODUCTION

Time-distance helioseismology [1] has been used to mea-
sure wave travel times in and around magnetic active
regions and sunspots to estimate subsurface flows and
wave-speed perturbations. A challenging problem is to
estimate the subsurface magnetic field from travel times.
In order to do so, one must understand the dependence of
the travel times on the magnetic field.

The interaction of acoustic waves with sunspot magnetic
fields is quite strong in the near surface layers. As a re-
sult, the effect of the magnetic field on the travel times
is not expected to be small near the surface. Deeper in-
side the Sun, however, the ratio of the magnetic pressure
to the gas pressure becomes small, and it is tempting to
treat the effects of the magnetic field on the waves using
perturbation theory. Of particular interest is the search
for a magnetic field at the bottom of the convection zone.
Such a linear inversion scheme has been proposed by
Kosovichev & Duvall [2] for time-distance helioseismol-
ogy using the ray approximation, but it needs to be ex-
tended to finite wavelengths. In relation to the linearity
of magnetic field effects, Gizon, Hanasoge & Birch [3]
have demonstrated the validity of the Born approxima-
tion using a simplified model of a flux tube; This paper
attempts to summarize this work.

2. THEPROBLEM

We start with the ideal equations of magnetohydrody-
namics. We solve the equations of continuity, momen-
tum, magnetic induction, Gauss’ law for the magnetic
field and utilize the ideal gas law. We denote density by
p, Vvelocity by v, pressure by p, temperature by 7' and
the magnetic field by B. We consider a magnetic cylin-
der with radius R and uniform magnetic field strength
B; embedded in an infinite, otherwise uniform, gravity
free medium with constant density pg, gas pressure po,
and temperature Ty. We use a cylindrical coordinate sys-
tem (r, 8, z) where r is the radial coordinate, ¢ is the az-
imuthal angle, and z is the vertical coordinate in the di-
rection of the cylinder axis. We denote the corresponding

unit vectors by #, , and 2. All steady physical quantities
are denoted with an overbar. In particular, we have

B = B,O[R-71)z, @
p = pOR—7)+pO(r— R), )
P = pOR-1)+pO(r—R), 3)

where the Heaviside step function is defined by ©(r) = 0
ifr <0and ©(r) = 1ifr > 0. The density and pressure
inside the tube are p, and p; respectively. We assume that
there is no mean flow in this problem, i.e. v = 0. We
choose to study the case where the background tempera-
ture is the same inside and outside the magnetized region,
resulting in constant sound speed everyewhere.

3. LINEAR WAVES

In this calculation, we only study linear waves on a steady
background. The magnetic field B and all other back-
ground quantities do not depend on z. Thus, a wave
with a z dependence of the form ei*=% where k, is
the wavenumber in the z direction, will have the same
z dependence after interacting with the magnetic cylin-
der. Consequently, we study solutions where the pressure
fluctuations are of the form

p'(r,z,t) = p(r) exp(ik. 2 — iwt), 4)



where ¢ is time, w is the circular frequency of oscillation,
r = (r,0) is a position vector perpendicular to the tube
axis, p' is the pressure fluctuation about the background
pressure, and p(r) contains the horizontal dependence of
the pressure fluctuation. All the other wave variables,
p',v',and B’ (fluctuating density, velocity and magnetic
field, respectively) are written in the same form as equa-
tion (4). A plane wave can be expanded in cylindrical
coordinates as a sum over azimuthal components (index
m) according to:

Pinc(r) = P i i Ty (kr)e™?, (5)

m=—0o0

where ‘inc’ denotes that the wave is incident, P is the
amplitude of the wave, J,, denotes the Bessel function
of order m, k is the horizontal wave vector, i.e. per-
pendicular to the axis of the flux tube, & = |k|, and
¢ is the angle between k and r. Applying the bound-
ary condition that the total wave pressure, hydrodynamic
plus magnetic, and the radial velocity must be continuous
across the tube boundary, the exact linear (small ampli-
tude waves) scattered wavefield due to the incident wave,
given by equation (5), may be computed [4]:

() = Py, i" By o (kir)e™ (r < R)

PI)VZ Pune + PY, i™ Ay Hy, (kr)ei™? (r > R)
(6)

where H,, = H,(T}) is the Hankel function of the first

kind of order m, and A,, and B,, are listed in [4]. The

quantity k; is the horizontal wavenumber inside the tube.

4. THE BORN APPROXIMATION

Details regarding the application of the Born approxima-
tion to the problem at hand may be found in Gizon, Hana-
soge & Birch [3] and references therein. Suffice it to say
that after mathematical manipulation, we obtain an ex-
pression for the scattered wave-field akin to equation (6):

ﬁBOrn (’l") = ﬁinc + P Z imeimd)
ConIm(kr) — & J! (kr) r <R
ABornpp - (kr) r > R,
(7

where pgorn denotes the horizontal dependence of the
total pressure fluctuation field (incident + scattered) ob-
tained in the Born approximation, J;, (x) denotes the
derivative of the function .J,,, () with respect to z and the
coefficients AB°™ and C,,, are described in Appendix C
of Gizon, Hanasoge & Birch [3]. We show analytically
that the Born approximation approaches the exact solu-
tion in the limit of small €, where € is a non-dimensional
parameter defined as:
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Figure 1. The fractional error n,,, = |ABo™ — A, |/| Al
as a function of e for m = 0 (solid line), m = 1 (dotted
line), and m = 2 (dashed line) for the case R = 2 Mm,
w/2m =3 mHz,and k, = 0.

as may be evidenced in Figure 1. We also show the ef-
fect of the tube radius on ABe™ /4, for various m in
Figure 2.

5. TRAVEL-TIMES

We define the travel-time shifts caused by the magnetic
cylinder as the time 6¢(r) which minimizes the function

X(t) = / at' [/ (') — ploe(r,t' — O, (9)

where p' is the full wavefield that includes both the in-
cident wavepacket and the scattered wave packet caused
by the magnetic field. The travel-time shifts can be com-
puted in this way for either the exact solution or the Born-
approximation and are shown in Figure 3(a). In addition,
we also display comparisons with traveltimes obtained
through the ray approximation in Figure 3(b).

6. CONCLUSIONS

Near the photosphere, € is not small. It has been sug-
gested by many authors that in this case the Born approx-
imation will fail. An exception is the claim by Rosenthal
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Figure 2. Ratio AB°rm /4, in the complex plane at fixed
e =1and k, = 0. The ratio is plotted for varying values
of the tube radius in the cases m = 0 (thick line), m = 1
(thin line), and 2 < m < 5 (dashed lines). The big circles
show the limit kR — 0. If the Born approximation were
correct for small tube radii, the big circles would coin-
cide with the cross. The small and medium-size circles
are for kR = 1 and kR = 1/2 respectively.

[5] that the Born approximation will remain valid for kG
magnetic fibrils in the limit where the radius of the mag-
netic element is much smaller than the wavelength. Con-
trary to this claim, we have shown in Figure 2 that even
in this simplified model, the error is quite significant.

The sensitivity of travel times to local perturbations in
internal solar properties can be described through lin-
ear sensitivity functions, also called travel-time kernels.
The present work suggests that travel-time kernels for
the subsurface magnetic field will be useful for probing
depths greater than a few hundred km beneath the pho-
tosphere, at least in the case when the travel times are
measured between surface points that are not in magnetic
regions. One should be careful, however, not to draw
definitive conclusions from the simple model we have
studied, given the complexity of the real solar problem.
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Figure 3. Local travel-time shifts §¢(r) caused by the
magnetic cylinder (e = 0.13). The travel times are mea-
sured at positions 7 in a plane perpendicular to both the
cylinder axis. The incoming wavepacket moves in the +x
direction. The radius of the tube is R = 2 Mm and the
tube axis is (z,y) = (0,0). In both panels the heavy
solid line is the exact travel-time shifts, the circles are the
Born travel-time shifts, and the light line gives the ray
approximation. Panel (a) shows the travel-time shifts as
a function of z at fixed y = 0. Panel (b) shows the travel-
time shifts as a function of y at fixed x = 10 Mm. The
Born approximation is reasonable for this value of €. The
ray-approximation does not capture finite-wavelength ef-
fects and fails to describe wavefront healing.



