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ABSTRACT

We discuss the problem of the computation of three-
dimensional Frechet kernels in spherical geometry for use
in time-distance helioseismology. In particular, we inves-
tigate the computation of the kernels that give the linear
sensitivity of travel times to internal flows. Simple tests
have been performed in the case of uniform rotation.

1. INTRODUCTION

Time-distance helioseismology, after Duvall et al. [1], is
a technique of local helioseismology. Unlike global he-
lioseismology, time-distance helioseismology enables us
to make three-dimensional maps of the solar interior (see
[2] and references therein). The basic measurements in
time-distance helioseismology are acoustic-wave travel
times. The travel time τ(r1|r2) for waves propagating
from point r1 to point r2 on the solar surface is measured
from the temporal cross-covariance between the oscilla-
tion signals measured at r1 and r2.

Here we study the sensitivity of the travel-time difference
δτ(r1|r2) = τ(r1|r2) − τ(r2|r1) to an internal steady
flow v(r). The motivation for this study is the interpre-
tation of travel times measured between points that are
separated by large angular distances (see e.g. [3]), which
requires a setup in spherical geometry. The position vec-
tor in the solar interior, r = (r, θ, φ), is defined in a
spherical-polar coordinate system. Under the assumption
that the magnitude of the flow is small, the relationship
between v and δτ is given by the following integral equa-
tion:

δτ =

∫

�

K(r) · v(r)d3r, (1)

where the integral is over the entire volume of the Sun.
The sensitivity of δτ to v = (vr, vθ, vφ) is given by the
vector kernel K = (Kr, Kθ, Kφ).

The general method for the computation of travel-time
kernels in the Born-approximation was given by Gizon &
Birch [4]. This method was succesfully applied by Birch
et al. [5] to obtain sound-speed kernels in plane-parallel

geometry. Approximate kernels for sound-speed pertur-
bations have also been calculated in spherical geometry in
the single-source approximation by Birch & Kosovichev
[6].

2. BACKGROUND SOLAR MODEL

The derivation of travel-time sensitivity kernels re-
quires a background solar model. We used model S
of Christensen-Dalsgaard et al. [7], which is spherically
symmetric and contains no background flow.

In order to model the excitation of solar oscillations by
convection, we use a stochastic forcing term uniformly
distributed at a fixed depth of 76 km below the photo-
sphere. This forcing function is the same as the one used
by Birch et al. [5], with a correlation time of 68 s. It is
assumed that the sources of excitation of the waves are
spatially uncorrelated.

3. GREEN’S FUNCTIONS

The zero-order wavefield (in the absence of a flow) is ob-
tained by convolving the forcing function with the zero-
order Green’s tensor [4]. By definition, the zero-order
Green’s function Gij(r|r

′; t − t′) gives the i-th compo-
nent of the displacement vector at (r, t) caused by an im-
pulsive source at (r′, t′) acting in the j-th direction [8, 5].
The Green’s function can be expressed as a sum over
adiabatic eigenfunctions of oscillation (complete basis),
which were computed with the pulsation package ADI-
PACK [9]. As a first step, we have used only modes
with l < 300, where l is the spherical harmonic de-
gree. Phenomenological mode damping was included in
the momentum equation, and is consistent with the mode
line widths measured by Schou [10] from one year of
medium-degree MDI data.

Figure 1 shows an example Green’s function,
Grr(r|r

′; t) = Grr(∆, t), which gives the radial
displacement at the surface (r) caused by an impulsive
radial displacement on the solar surface (r′). This



Figure 1. Green’s function Grr(∆, t) as a function of
angular distance, ∆, and time lag, t. Both the source
and the observation points are on the solar surface. The
amplitude of the Green’s function was scaled by a factor
proportional to ∆ to bring out details at large angular
distances and large time lags.

Green’s function is shown as a function of the angular
distance ∆ between the source r′ and the observation
point r, measured along a great circle. By construction,
the Green’s function is causal (zero for t < 0). The main
ridge of the Green’s function follows the time-distance
curve [2]. The second ridge at later times corresponds
to waves that bounce once in between the source and
the observation point. We note that the effects of mode
damping on the Green’s function are quite significant.

4. ZERO-ORDER POWER SPECTRUM AND
CROSS-COVARIANCE

The expectation value of the power spectrum of the ob-
served signal depends on the Green’s tensor and on the
source covariance matrix. In addition, it depends on what
signal is being observed. For the sake of simplicity, we
choose the radial component of velocity at the photo-
sphere as the observable. The instrumental point-spread
function of the telescope may be included by applying a
low pass filter on the spatial transform of the signal; we
took a filter of the form exp[−(l/150)2] to model MDI in
its medium-degree resolution mode.

Figure 2 shows the power spectrum of the radial compo-
nent of velocity. Overall, the power is quite close to the
real observations, although it could still be improved. The
jagged appearance at high frequencies is due to missing
modes, i.e. modes for which we did not have a linewidth
measurement; this could easily be fixed in the future by
extrapolation. Figure 3 is a cut through this power spec-
trum at spherical harmonic degree 30. The fact that power
peaks near 3 mHz indicates that the source function that
drives the oscillations is reasonable.

The model cross-covariance function is shown in Fig. 4b

Figure 2. Power spectrum of the radial component of ve-
locity as a function of harmonic degree and temporal fre-
quency. The color scale gives the natural logarithm of
the power.

Figure 3. Cut through the power spectrum of Fig. 2 at
l = 30, versus temporal frequency.

at fixed angular distance ∆ = 30◦, as a function of cor-
relation time lag. Only the first-bounce correlations are
shown. For comparison, an observed cross-covariance
function is shown in Fig. 4a (courtesy of J.G. Beck). The
agreement between theory and observation is not perfect,
but reasonably good for our current purpose.

5. UNIFORM ROTATION

We first study the effect of uniform rotation on the cross-
correlation and the travel times. In this case, the vector
flow is of the form

v(r) = rΩ sin θ φ̂, (2)

where Ω is the angular velocity. Given two points r1 and
r2 on the equator and separated by an angular distance ∆,
the cross-covariance between these two points is given by

C(∆, t) = C0(|∆ − Ωt|, t), (3)



Figure 4. Cross-covariance functions at angular distance
∆ = 30◦ as a function of correlation time lag. (a) Ob-
served cross-covariance using MDI medium-degree data,
according to the procedure described by Giles [3]. (b)
Theoretical cross-covariance from the present work. (c)
Theoretical perturbation to the cross-covariance caused
by uniform rotation with Ω/2π = 430 nHz. The two ob-
servation points are on the equator.

where C0 is the zero-order cross-covariance function (no
rotation). The above equation was obtained by transform-
ing from an inertial frame to the co-rotating frame. It is
valid if no spatial filtering is applied to the observed sig-
nal.

Figure 4c shows the perturbation to C0 when Ω/2π =
430 nHz, i.e. the difference ∆C = C0(|∆ − Ωt|, t) −
C0(∆, t). The function ∆C(∆, t) is nearly antisymmet-
ric in t. This is consistent with the idea that rotation af-
fects mostly the travel-time difference (δτ ), not predom-
inantly the mean travel time.

We have measured the first-bounce travel-time difference
according to the definition given by Gizon & Birch [11].
As can be seen in Fig. 5, the dependence between δτ
and Ω is almost linear in the range −500 < Ω/2π <
500 nHz. This provides some justification for wanting to
obtain linear sensitivity kernels, as defined by Eq. (1).

6. KERNELS FOR FLOWS

The basic method for computing travel-time sensitivity
kernels was developed by geophysicists, using a single-
scattering approximation (e.g. [12]). The same method
was adapted by Gizon & Birch [4] in the context of helio-
seismology, using the first Born approximation and tak-
ing into account the fact that waves are generated by ran-
dom sources that are distributed in the near-surface lay-
ers of the Sun. It is relatively straighforward to apply this
procedure to obtain an expression for sensitivity kernels
for flows, in spherical geometry. Using the notations of
Gizon & Birch [4], the first-order perturbation to the wave
displacement, δξ, is related to the flow, v, according to

Figure 5. Travel-time difference δτ due to uniform ro-
tation (angular velocity Ω). The two observation points
are on the equator, separated by the angular distance
∆ = 30◦.

L0[δξ] = −2ρv · ∇∂ξ
0
/∂t, where L0 is the zero-order

(i.e. no-flow) wave operator, ξ
0

is the zero-order wave
displacement, and ρ is the density. The first Born ap-
proximation is an equivalent-source description of wave
interaction: we can solve for δξ by using the unperturbed
Green’s tensor discussed in Section 3. We have ignored
the first-order effect of vertical flows on the radial strati-
fication.

The numerical evaluation of the kernels, however, is not
trivial: it requires large computer resources. As a start,
we have chosen to consider the case when only modes
with fixed values of the harmonic degree l and the radial
order n enter the expression of the kernels. This is meant
to represent the case when the observed signal is filtered
to let through only this particular multiplet. The flows
only couple the 2l + 1 azimuthal orders, m.

Figure 6 shows cuts through a kernel Kφ (sensitivity to
vφ), which only includes contributions from the modes
with l = 30 and n = 10. The kernel has maximum val-
ues close to the observation points and near the surface.
In addition, there is some sensitivity on the opposite side
of the Sun (Single-multiplet kernels are invariant under
the transformation φ → φ + π). Elliptical and hyper-
bolic features are seen in the cut r = R�, consistent with
geometrical features seen in other kernels [4, 5]. As ex-
pected, the sensitivity reaches a depth that matches the
lower turning point of the modes’ eigenfunctions.

In order to check if the overall scaling of the above kernel
is correct, we compute the travel-time difference due to
uniform rotation in two different ways: (1) by integrating
rKφ sin θ over the volume of the Sun and (2) by measur-
ing the travel times from the perturbed cross-covariance
according to Eq. (3). The comparison between (1) and (2)
is shown in Fig. 7. The agreement is found to be good.



Figure 6. Cuts through a sensitivity kernel Kφ(r, θ, φ) in the case when only modes with l = 30 and n = 10 are observed.
The kernel Kφ gives the sensitivity of the travel-time difference, δτ , to the longitudinal component of the flow, vφ. The
observation points are on the equator (θ1 = θ2 = π/2) at longitudes φ1 = −15◦ and φ2 = 15◦, separated by the angular
distance ∆ = φ2 − φ1 = 30◦. Left: Cut through Kφ at θ = π/2 (equator). Right: Cut through Kφ at r = R�. Only half
of the kernel is shown in these two plots: the full kernel is symmetric with respect to the center of the Sun. The values of
the kernel are in the range [−36.4, 7.3]× 10−28 s2 m−4.

Figure 7. Travel-time difference δτ due to uniform ro-
tation, in the case when only modes with l = 30 and
n = 10 are observed. The two observation points are on
the equator, separated by the angular distance ∆ = 30◦.
The black line is for the exact answer, while the red line is
obtained by integrating rKφ sin θ over the volume of the
Sun, where Kφ is the kernel shown in Fig. 6.

7. FUTURE WORK

We have set up the general problem of the computation
of travel-time sensitivity kernels for flows, in spherical
geometry. Simple tests have been performed on kernels
when a single multiplet (n, l) is present. The full ker-
nel includes several sums over all the modes, including
couplings terms. Although our code is ready for this cal-
culation, we are currently limited by computer resources.
An efficient implementation of the code will be required

in order to speed up the calculation. We suspect that a
number of physical approximations will have to be used
as well. Additional effects, like foreshortening and the
projection of the surface velocity onto the line of sight,
are, in principle, conceptually easy to implement.

REFERENCES

[1] Duvall T.L., Jefferies S.M., Harvey J.W., Pomerantz
M.A., 1993, Nature, 362, 430

[2] Kosovichev A.G., Duvall T.L., Scherrer P.H., 2000,
Solar Physics 192, 159

[3] Giles P., 1999, Probing Flows in the Upper Convec-
tion Zone, Ph.D. thesis, Stanford University

[4] Gizon L., Birch A.C., 2002, ApJ, 571, 966

[5] Birch A.C., Kosovichev A.G., Duvall T.L., 2004, ApJ
608, 580

[6] Birch A.C., Kosovichev A.G., 2000, Solar Physics
192, 193

[7] Christensen-Dalsgaard J. et al., 1996, Science 272,
1286

[8] Dahlen F.A., Tromp J., 1998, Theoretical Global
Seismology, Princetion Univ. Press

[9] Christensen-Dalsgaard J., Berthomieu G., 1991, in
Solar interior and (Univ. Arizona Press), 401

[10] Schou J., 2006, private communication

[11] Gizon L., Birch A.C., 2004, ApJ, 614, 472

[12] Zhao L., Jordan T.H., 1998, Geophys. J. Int., 133,
683


