
COMPUTING HELIOSEISMIC WAVE INTERACTIONS

Shravan M. Hanasoge

Max-Planck-Institut für Sonnensystemforschung

Department of Geosciences, Princeton University

This document describes in some detail a code that can be used to compute the interactions of waves

with magnetic flux tubes, sound-speed and damping perturbations, and study the wave field in the pres-

ence of multiple/single sources or anomalies thereof. The computational method is described in detail in

Hanasoge et al. (2007a,b); Hanasoge & Duvall (2007); Hanasoge (2007a,b); Hanasoge et al. (2010); we solve

the linearized MHD and Euler equations in 3D Cartesian geometry. The derivatives are computed using

sixth-order compact finite differences (in all three directions) or FFTs in the horizontal directions and an op-

timized second-order RK time stepping scheme is implemented. The verification and validation are discussed

in detail in the above references.

1. FILES AND COMPILATION

The code is written in a mixture of Fortran 90 and Fortran 77. The following files are required for

successful compilation:

• Basic parameters (size, output directory etc.) - params.i

• Name says all; controls i/o streams, when to time evolve etc. - driver.f90

• Initializing the code, setting up the background model etc. - initialize.f90

• Subroutines to compute norms, i/o etc. - all modules.f90

• The physics kernel: initializing the system to be solved, and sponge-boundary equations - physics.f90

• Convolutional-Perfectly-Matched-Layer boundary-conditioned velocity equations - pml.f90

• CPML/ Sponge boundary-conditioned equations in displacement - displacement.f90

• Derivative routines and parallel transposes of arrays - derivatives.f90

• 2D routines: MHD / quiet and PML / sponge - physics2d.f90

• Time stepping algorithm and controlling the de-aliasing rate - step.f90

• Compute the derivative along the first dimension - dbyd1.f

• File associated with dbyd1.f - tridag.f

• Compute the derivative along the second dimension - dbyd2.f

• File associated with dbyd2.f - mtridag.f

• One to bind them all - makefile

– 2 –

The dependencies of files on each other are listed in makefile. The construction of sophisticated makefiles is

beyond the abilities of the author; consequently, the makefile can perform only very crude and simple tasks:

• Typing make on the Linux prompt will compile the file

• make clean will rid the directory of the .o, .mod files and the executable - this is to allow for fresh

recompilation.

One must inspect the makefile in order to ensure that the correct Fortran compiler (FC=) has been identified.

The flags (FFLAGS =) should call for the highest degree of optimization (-O3 in the case of ifort) allowed

by the compiler to ensure best performance. The FFTW and CFITSIO libraries are required for compilation;

the former in the event that the horizontal derivatives be computed using FFTs and the latter to read and

output files in the FITS Astronomical format. These libraries may be easily downloaded from the internet;

a mere Google search for these two libraries will produce a number of relevant links. The MPI parameters

file, mpif.h should preferably be placed in the same directory as the code; if not, an appropriate link to its

location must be provided in the file initialize.f90, i.e. in the command: INCLUDE ’location/mpif.h’,

where location is the path to the mpif.h file. The name of your executable may be altered at will; simply

change the COMMAND = in makefile to reflect your choice.

Lastly, because of differences in the OpenMPI (eg. IBM Machines) and MPT (Message Passing

Toolkit - for SGI Altix) standards, I’ve created two different versions of the initialize.f90 file, titled

initialize mpt.f90 and initialize openmpi.f90 and of the all modules.f90file - all modules mpt.f90

and all modules openmpi.f90. Depending on the system architecture and software please rename the files

appropriately - i.e., if you are on an OpenMPI system, rename initialize openmpi.f90 and

all modules openmpi.f90 as initialize.f90 and all modules.f90 respectively.

2. PARALLEL ALGORITHM

Because the sizes of the problems of study are rather large, a parallel implementation is unavoidable.

The parallelism is concordant with the Message Passing Interface (MPI) standards v1.2 and OpenMPI.

The central variables of evolution are ρ, vx, vy, vz , p, bx, by, bz (fluctuations in density, three components

of velocity, pressure, and three components of magnetic field respectively). Each variable is an array of

dimensions (nx, ny, nz), where the three components are the number of grid points in directions (x, y, z)

respectively. The algorithm involves dividing the arrays into chunks of the data among the processors as

equitably as possible. Denoting the number of processors by nP , the storage pattern is determined such

that each processor contains approximately (nx, ⌊ny/nP ⌋, nz) sized chunks of the original array. Thus the

parallelism is only in one direction; this makes the book-keeping much easier when interchanging information

between processors. It is also viable when the problem is not too computationally expensive. Thus for very

large sizes, i.e. when nx > 700 or so, a parallel algorithm that involves domain decomposition along multiple

directions may be more efficient. In any case, the derivatives in the (x, z) directions may be computed

in-processor while for the y gradient, the arrays must be reconfigured such that all the y points for a given

(x, z) are in the same processor. The machinery required for the export and reception of information between

processors is constructed in the subroutine Initialize all. The total number of processors (i.e. = how

many requested) involved in the calculation is called numtasks. When the MPI job is initialized, each

processor is assigned a unique number between 0 and numtasks-1, denoted by rank in the code. The rank

= 0 process takes on the role of root. The MPI process is set off by a call to the subroutine Initialize all.

– 3 –

Once the MPI variables have been initialized, the domain decomposition is performed; essentially arrays of

sizes (nx, dim2(rank), nz) are created locally in each processor. nx and nz correspond to the array dimensions

in the x,z directions respectively. The y dimension is decomposed into bits of sizes dim2(rank). The dim2

part refers to the fact that the decomposition is along the second dimension; a process with assignation rank

stores (nx, dim2(rank), nz) sized arrays. In the y dimension, each process knows only of the existence of

indices spanning the range [1,dim2(rank] - clearly it is not possible to proceed further without determining

what these indices map on to in the uncorrupted (non-decomposed) y grid. Thus we introduce another

variable ystart(rank) which indicates the starting index of access of the process rank along the undivided

y axis. And since the size of the decomposed second dimension stored in the process rank is dim2(rank),

the range [ystart(rank), ystart(rank) + dim2(rank)] denotes the indices along the undivided y axis

that rank stores. Note that the values of the coordinate axes (i.e. the x(i),y(j),z(k)) are defined on each

processor.

The x,y co-ordinates are normalized by their horizontal side lengths such that both lie in the range

[0,1]. The z co-ordinate is the normalized solar radius, r/R⊙, meaning that zphotosphere = 1, with z < 1

referring to the interior and z > 1, the atmosphere. When incorporating inhomogeneous source distributions

or localized sound-speed/damping perturbations, the coding of these must be performed in parallel space.

Note that each processor has access to all the x and z grid points but only a limited number of y points.

Denoting the running indices in these directions by i,j,k, here is an example of a Fortran do-loop that

computes the spherical radial coordinate r(i,j,k) in parallel space:

do k=1,nz

do j=1,dim2(rank)

do i=1,nx

r(i,j,k) = (x(i)**2.0 + y(j+ystart(rank)-1)**2.0 + z(k)**2.0)**0.5

enddo

enddo

enddo

Thus on each local processor, the size of the radial coordinate array r is (nx,dim2(rank),nz), but its values

reflect the fact that different processors store differing values of the y coordinate. Here’s another example

that shows how to suppress wave source excitation over a circular region of radius approximately 10 Mm:

do j=1,dim2(rank)

do i=1,nx

tempxy=(((x(i)-0.5)*400)**2.0+((y(j+ystart(rank)-1)-0.5)*400)**2.0)**0.5

vr(i,j,:)=vr(i,j,:)/(1.0+exp((8.0-tempxy)*1.5))

enddo

enddo

In this case, the horizontal sides of the cube are 400 Mm each, and the perturbation is located at the center of

the computational domain - which is why the term tempxy = ((x(i) - 0.5)**2.0 + This do-loop

may be placed after the forcing function, vr is read in. Note that the directive to read in the forcing function

vr is in driver.f90, the central controller of i/o streams from the code. The third dimension of the forcing

– 4 –

function is time; so in the above do loop, the sources are suppressed over the entire simulation duration.

Lastly, a manner of introducing sound-speed perturbations is demonstrated:

z_cent = 1.0

z_spread = 20.

do k=1,nz

do j=1,dim2(rank)

do i=1,nx

tempxy = ((x(i)-0.5)*200.0)**2.0 + ((y(j+ystart(rank)-1) - 0.5)*200.)**2.0

c2(i,j,k) = c2(i,j,k)*(1.0 + 0.1*exp(-((1.0 -z(k))*Rsun*10.0**(-8.0)/z_cent)**2.0 &

- tempxy/z_spread**2.0))

enddo

enddo

enddo

This is a slightly more complicated case but no different in principle from the other two. c2, as suspected,

refers to the sound speed square; the 0.1 factor in front of the exponential term implies a 10% increase in

the squared sound speed. The term (1.0 -z(k))*Rsun * 10.0 **(-8.0) (Rsun is expressed in cgs units)

converts the solar radius normalized z into mega-meters, with the photospheric level now defined as the zero

point. The tempxy term represents the cylindrical radius squared, with the r = 0 point the horizontal center

of a 200 × 200 Mm2 box. The vertical extent of the perturbation is approximately z cent = 1.0 Mm and

the horizontal size is given by z spread = 20 Mm (or scales like these terms). Also look at the file examples

for a list of perturbations and the method used to code them in.

3. THE VARIABLES AND IMPORTANT SUBROUTINES

The code starts from the driver.f90 file. The first subroutine to be called is Initialize all which

sets up the MPI variables, data types and communication protocols. The following variable arrays (amongst

others) are allocated:

• a - dimensions of (nx, dim2(rank), nz, nvar) - stores all the system state (nvar variables)

• temp step - same dimensions as a -work space for the time evolution scheme (physics, step.f90)

• scr - same dimensions as a - the right hand side work space for the time evolution scheme (physics,

step.f90)

• rho, v x, v y, v z, p, bx, by, bz, xi x, xi y, xi z - pointers to the different variables - they

point to sequential parts of the temp step array

• RHScont, RHSv x, RHSv y, RHSv z, RHSp, RHSb x, RHSb y, RHSb z, RHSxi x, RHSxi y, RHSxi z

- point to different parts of scr depending on the equations being solved

• p0, rho0, c2, box, boy, boz, v0 x,v0 y,v0 z - background variables (self explanatory)

• vr, forcing - forcing functions, the former has dimensions of nx,dim2(rank),nt while the latter,

nx,dim2(rank). vr contains the excitation function sampled every minute (read in by driver.f90),

– 5 –

whereas the latter is the function interpolated to the current time level through the application of

sixth-order Lagrange polynomials.

Each of the background variables is normalized: rho0, c2 by their maximum value in the domain (termed

in the code as dimrho, dimc), p0 by dimrho * dimc**2.0, the horizontal co-ordinates by the length of the

side, background magnetic field by
√

4 ∗ π ∗ dimrho ∗ dimc ∗ ∗2, velocities (background and oscillatory) by

dimc, and finally the time coordinate by Rsun/dimc. When the system is started off at a non-zero initial

state, they must be read into the appropriate parts of the variable a. For example, if starting with an initial

density condition, say rhotemp, (over the background, of course), the following procedure is to be adopted:

• a(:,:,:,1) = rhotemp(:,:,:)

• For values of k=1,8 (depending on whether the simulation is magnetic or not), a(:,:,:,k) refers to

rho, v x, v y, v z, p, bx, by, bz respectively (for equations in velocity).

• For values of k=1,6, a(:,:,:,k) refers to xi x, xi y, xi z, v x, v y, v z respectively (for equa-

tions in displacement).

• If background variables such as velocity are programmed directly in the code (as opposed to being read

in), they must be normalized by dimc.

Next, MP initialize RHS and Initialize step, functions that arrange the machinery to compute the

right hand sides and perform the time evolution, are called by the driver.f90 file. The forcing function is

subsequently read in and the time stepping is started. Before each evolutionary step (achieved by calling the

subroutine step), the forcing function vr is interpolated to the current time level. At each step, information

regarding the wall clock time/ cpu time and the stability of the system are reported. The stability is

quantified crudely by computing the L2 norm of the vertical velocity variable v z. The RMS value at each

timestep is stored in the file rms hist placed in the local simulation directory. Plotting these values will tell

you whether the calculation is stable or not. driver.f90 is a good place to implement perturbations (look

in examples for directions), extract and read in data.

Thus far I have religiously adopted the FITS FORMAT of binary file storage. I use the following

subroutines (located in all modules.f90) to read and write in files:

• call readfits(filename, array-name, size of third dimension) will read from filename (full

location must be given of course) into an array called array-name. The dimensions of the data (in nor-

mal space) are expected to be nx, ny, nthird, where nthird is an input to the readfits call. Thus

to read a forcing function of size (nx, ny, nt) from the directory /tmp20/shravan/forcing.fits into

the array vr, we would use the following command: call readfits(’/tmp20/shravan/forcing.fits’,

vr, nt).

• call writefits 3D(filename, array-name, size of third dimension) - same functionality as

the readfits command. If say we wanted to output the data at a series of heights from index 192 to 221,

we would then use: call writefits 3D(’/tmp20/shravan/data.fits’, a(:,:,192:221,4),30).

This outputs the v z variable at all horizontal locations and at the specific heights stated.

• call write out full state - this outputs the full 3D state of the system (all relevant variables)

• call write out slice (grid point) - this is a subroutine that outputs all relevant variables at the

radial grid point specified.

– 6 –

The files contain some basic documentation to assist in code interpretation. It’s mostly simple.

Lastly, for more advanced manipulation, the subroutines transpose 3D y and inv transpose 3D y can

be called to perform data transposes across the processors. For example, if one wished to access all the y grid

points on the same processor (normally they are distributed across the processors), then the command call

transpose 3D y(input, output) would effect this in the output array output; subsequently, if one wished

to then revert to the original distribution, invoke call inv transpose 3D y(input,output) to accomplish

this (output has the requisite arrangement).

4. FORCING FUNCTION

Generally the easiest way to devise forcing functions is to go into spectral space (kx, ky, ω), choose a

Gaussian distributed random number for each coefficient and multiply the resultant array by a function of

frequency, F (ω) such that a solar-like variation of power with frequency is obtained. Keeping in mind the

limitations on computer memory, the cadence of the forcing function should be about a minute. Note that

because the damping in the simulation is not in the least solar-like, the final balance of power tilts in favour

of the higher frequencies. The lack of appropriate frequency dependent damping means that low mode-mass

high-frequency waves now abound blissfully. Consequently, ensure that the forcing function drives the lower

frequencies harder (not too low, otherwise the travel times turn out strange). For now, I’ve put in a number

of forcing functions that can be downloaded from the website.

5. SIMULATION PARAMETERS AND PERFORMANCE

The file params.i contains a list of important parameters that may be changed based on the requirements

of the simulations; the grid size, grid dimensions, i/o type and locations, wall clock time of the simulation,

the restarting time index (if the simulation had been paused) etc. The params.i file contains documentation

to assist in choosing the parameters of interest.

Although I haven’t really tested the performance of the code carefully, I have found reasonable linear

scalability for a smallish number processors (< 128). Note that there is a balance between computational

effort and inter-processor communication that determines the optimum. A rule of thumb that works for

the most part is to make sure that ⌊ny/nP ⌋ ≥ 2, so that the computation to communication ratio does

not become too small. The communication costs depend on the latency and asymptotic bandwidth of the

network and must be estimated experimentally.

6. ADDITIONAL BELLS, WHISTLES, & CAVEATS

Now there is an option to use one of two types of boundary conditions: the standard sponge and the

new, fancy Convolutional Perfectly Matched Layer (Hanasoge et al. 2010). You can study MHD, flows, and

quiet Sun problems using either condition. I found the MHD equations are remarkably hard to stabilize;

there are deep holes in our understanding of how to limit the Alfvén speed and interpret the equations

correctly. The primary cause for instabilities in MHD runs I found were the z derivatives of the horizontal

fields in j0 = ∇×B0: I have now set them to zero - and this is not an unreasonable assumption, especially

in the atmosphere. I also smoothly reduce the j0 to zero in the last 10 grid points. These may be found in

– 7 –

the initializing subroutine in physics.f90. I must warn the user that I cannot guarantee convergence with

arbitrary magnetic fields. An excellent way to check things is to do a 2D run - an enormously faster and

cheaper method of testing the setup. Note that in order to run in 2D mode, you have to set ny = 1.

I have also included the equations for displacement - these are decidedly cheaper for flows but the

expense is almost identical for the MHD/quiet. All in all, 16 options (systems of equations + 2D/3D +

boundary conditions) exist.

7. ACKNOWLEDGEMENTS

The HD and flow part of the code was written sometime towards the end of 2006. Aaron Birch must

be thanked for excellent ideas on how to build reasonable forcing functions and his help with pinpointing

temporal aliasing issues. The MHD extension was put in over the period 2007-2008; several discussions with

Keiji Hayashi and Robert Cameron helped greatly. Many thanks to Hamed Moradi for spending time on

the code and helping with troubleshooting issues. The Columbia support staff at NASA Ames have assisted

in sorting out several bugs and in generously extending my computational quota. A significant part of the

software was developed on Stanford machines and subsequently, the Max-Planck group for helioseismology;

many thanks to Keh-Cheng Chu, Brian Roberts, and Michel Bruns for technical support. This code would

not have been written without Phil Scherrer’s strong support over the years. The funding to allow for a

revision of this software came from a DLR grant whose PI is Laurent Gizon.

REFERENCES

Hanasoge, S. M. 2007a, ArXiv e-prints, 712

—. 2007b, PhD thesis, Stanford University

Hanasoge, S. M., Couvidat, S., Rajaguru, S. P., & Birch, A. C. 2007a, ArXiv e-prints, 707

Hanasoge, S. M., & Duvall, Jr., T. L. 2007, Astronomische Nachrichten, 328, 319

Hanasoge, S. M., Duvall, Jr., T. L., & Couvidat, S. 2007b, ApJ, 664, 1234

Hanasoge, S. M., Komatitsch, D., & Gizon, L. 2010, ArXiv e-prints

This preprint was prepared with the AAS LATEX macros v5.2.

