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ABSTRACT

Comprehending the manner in which magnetic fields affect propagating waves is a first step toward constructing
accurate helioseismic models of active region subsurface structure and dynamics. Here we present a numerical method
for computing the linear interaction of waves with magnetic fields embedded in a solar-like stratified background. The
ideal magnetohydrodynamic (MHD) equations are solved in a three-dimensional box that straddles the solar surface,
extending from 35 Mm below the photosphere to 1.2 Mm into the atmosphere. One of the challenges in performing
these simulations involves generating a magnetohydrostatic (MHS) state wherein the stratification assumes horizontal
inhomogeneity in addition to the strong vertical stratification associated with the near-surface layers. Keeping in mind
that the aim of this effort is to understand and characterize linear MHD interactions, we discuss a means of computing
statically consistent background states. Power maps computed from simulations of waves interacting with thick flux
tubes that have peak photospheric field strengths of 600 and 3000 G are presented. Strong modal power reduction
in the ‘‘umbral’’ regions of the flux tube enveloped by a halo of increased wave power is seen in the simulations with
the thick flux tubes. These enhancements are also seen in Doppler velocity power maps of active regions observed
in the Sun, which leads us to propose that the halo has MHD underpinnings.

Subject headinggs: hydrodynamics — Sun: helioseismology — Sun: interior — Sun: oscillations — waves

1. INTRODUCTION

The complexity of the solar background state, subtleties in the
dynamics of wave propagation in the near-surface layers, and the
inherently anisotropic, tensorial nature of magnetic fields dis-
advantage analytically driven MHD studies. Theoretical models
of MHD interactions in flux concentrations have proven to be
somewhat restrictive in terms of the scope of problems addressed,
given the effort required to construct these models. In this regard,
numerical forwardmodeling of wave propagation (e.g., Hanasoge
et al. 2006, 2007b; Cameron et al. 2007; Shelyag et al. 2007;
Khomenko et al. 2008; Parchevsky & Kosovichev 2007a) has
been relatively successful at making sense of the sometimes
highly counterintuitive wave phenomena observed in the Sun.

Accurately deconstructing the subsurface structure and dy-
namics of active regions is a difficult task. Since the development
of methods of time-distance helioseismology (Duvall et al. 1993;
Gizon & Birch 2005) and the subsequent investigations into the
nature of the sunspot underbelly (Duvall et al. 1996; Kosovichev
& Duvall 1997; Couvidat et al. 2006), there have been several
arguments attempting to establish either the significance of MHD
interactions in sunspot structure and dynamics inversions (e.g.,
Lindsey & Braun 2005; Schunker et al. 2005) or the contrary
(Zhao&Kosovichev 2006). Recent theories (Braun&Birch 2006)
argue that most of the observed wave phase shifts in sunspot
regions occur in a thin subphotospheric region of 1 Mm depth,
where magnetic field effects are putatively the largest. The im-
plication is that the causative mechanisms behind observed wave
phase shifts may have been misidentified, a conclusion echoed
by Hanasoge et al. (2007a), who demonstrate that wave source
suppression due to convective blocking in sunspots can also con-
tribute to the creation of time shifts (see alsoGizon&Birch 2002).
Moreover, wave phase shifts inferred in regions of strong mag-
netic fields fromMichelson Doppler Imager (MDI; Scherrer et al.
1995) observations (e.g., Duvall et al. 1996) are difficult to in-
terpret because of substantial changes in the line formation height
due to profound alterations in the thermal structure of the under-

lying plasma. On the positive side, the prevalence of computing
resources and numerical methodologies now afford us the ability
to conduct investigations thatmay not have been possible a decade
ago. Developing an interaction theory of waves and magnetic
fields will allow us to perform more consistent studies of sunspot
structure and dynamics.

The reduction in acoustic oscillation power in sunspot regions
(e.g., Lites et al. 1982) has been the subject of extensive observa-
tions, with several theories put forth to explain this phenomenon
(e.g., Hindman et al. 1997; Parchevsky & Kosovichev 2007b).
Hindman et al. (1997) have discussed several plausible mech-
anisms that may be contributing to the power reduction, but the
participatory extents are as yet unknown. On a related issue, a
number of studies have focused on placing observational con-
straints on the degree of wave absorption in sunspots (e.g., Braun
et al. 1987; Bogdan et al. 1993; Braun 1995; Cally 1995). The
technique discussed here provides an independent manner of in-
vestigating all of these issues. Acoustic or seismic enhancements
(or halos, as they are termed in this paper) are ubiquitously seen in
both velocity and intensity observations, encircling active regions
(e.g., Braun et al. 1992; Brown et al. 1992; Balthasar et al. 1998;
Hindman & Brown 1998; Donea et al. 2000; Nagashima et al.
2007). Some authors (Brown et al. 1992; Donea et al. 2000) have
speculated that they originate from enhanced source activity in the
vicinity of the active region. In this paper, we present power maps
from simulations of waves interacting with moderate to strong
magnetic fields; acoustic halos are clearly seen in these images,
implicating an MHD-based mechanism.

On a very different scale but of equal importance are smallmag-
netic elements and thin flux tubes. The dynamical emergence and
disappearance of these flux tubes provides us with insights into
the photospheric dynamo (e.g., Cattaneo 1999). In a bid to un-
derstand the structure of these flux tubes, Duvall et al. (2006)
analyzed MDI observations of thousands of independent small
magnetic elements, thereby developing a highly resolved statis-
tical picture of the associated wave scattering. Understanding the
nature of the interaction between thin flux tubes and waves may
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allow us to recover details of the flux tube structure from the
scattering information. Forward models of wave interactions with
thin flux tubes (e.g., Bogdan & Cally 1995; Bogdan et al. 1996;
Gizon et al. 2006; Hanasoge et al. 2008) can then be constructed
in order to place constraints on the subsurface magnetic field dis-
tribution. Models of this sort can be used in theoretical studies of
flux emergence (e.g., Cheung et al. 2006).

In this regard, a first step is to devise a sufficiently general
manner of computing wave propagation in a magnetized plasma.
The linearized ideal MHD equations provide a reasonable starting
point, since MHD oscillations in the photosphere and below are
governed by predominantly linear physics (e.g., Bogdan 2000).
Cally & Bogdan (1997), Rosenthal & Julien (2000), and Cally
(2000) performedMHD simulations in two dimensions in order
to study rates of mode absorption in magnetic flux tubes. Sub-
sequently, Cameron et al. (2007) developed and validated nu-
merical techniques with which to perform three-dimensional
linear MHD computations, with a focus on recovering the mag-
netic field distribution on the basis of wave-scattering measure-
ments. The assumptions of linear wave propagation and time
stationarity of the background state are common threads between
this work and that of the above-cited authors.

High-order numerical accuracy is a minimum requirement for
computational work. The linear calculation discussed here does
not face the same restrictions as would a nonlinear counterpart,
where the presence of shocks makes it quite difficult to raise the
order of the numerical scheme without introducing instabilities.
We discuss the methods employed to spatiotemporally evolve
solutions of the ideal MHD equations in x 2. Subsequently, an
empirical method to generate stable MHS states is introduced
in x 3, with an illustration of one such state: a flux tube with a
peak photospheric field strength of 600 G. Results of wave sim-
ulations with some flux tubes—specifically, the phenomena of
wave power reduction and enhancement—are discussed in x 3.1.
Finally, we summarize and conclude in x 4.

2. COMPUTATIONAL METHOD

Similar to the forwardmodels of the solar wave field developed
in Hanasoge et al. (2006), Hanasoge et al. (2007b), and Hanasoge
(2007), we start by linearizing and modifying the ideal MHD
equations in the following manner:

@t� ¼ �:= (�0v)� ��; ð1Þ

@tv ¼� 1

�0
:p� �

�0
gêz

þ �(z)

4��0
½(: < B0) < Bþ (: < B) < B0�þ S� �v; ð2Þ

@t p ¼ �v = :p0 � �0c
2:= v� �p; ð3Þ

@tB ¼ �: < v < B0ð Þ � �B; ð4Þ

:=B ¼ 0; ð5Þ

where � denotes density (unless stated otherwise, the subscript
‘‘0’’ indicates a time-stationary background quantity, whereas un-
subscripted terms fluctuate), p is the pressure,B ¼ (Bx; By; Bz) is
the magnetic field, v ¼ (vx; vy; vz) is the vector velocity, g ¼ g(z)
is gravity with direction vector �êz, c ¼ c(x; y; z) is the sound
speed, � ¼ �(x; y; z) > 0 is a damping sponge that enhances
wave absorption at all horizontal and vertical boundaries (see
Fig. 1), �(z) is a Lorentz force ‘‘controller’’ (R. Cameron 2007
and R. Stein 2007, private communications), and S is the source
term. The controller term � (see Fig. 2a) is such that it is con-

stant (=1) over most of the interior but decays rapidly with height
above the photosphere. Note that � is also present in equation (4):
as the influence of the magnetic field on the fluid decreases
(eq. [2]), so must the effect of the fluid on the magnetic field.
For further discussion on the reasoning behind this term, see x 2.1.
We employ a Cartesian coordinate system (x; y; z), where êz

denotes the unit vector along the vertical or z-axis and t is time.
Because of the presence of a spatially varying magnetic structure,
the background pressure, density, and sound speed adopt a fully
three-dimensional spatial dependence. In sequential order, equa-
tions (1)Y(3) enforce mass, momentum, and energy conservation,
respectively, while equation (4) is the induction equation. Equa-
tion (5) assures us that magnetic monopoles do not exist. In inte-
rior regions of the computational box (away from the boundaries),
solutions to the above equations are adiabatic, since the damping
terms decay to zero here. The source term S is a spatiotemporally
varying function, the structure of which has been discussed in
some detail in Hanasoge & Duvall (2007) and Hanasoge et al.
(2007b). Essentially, it is a phenomenological model for the
multiple-source wave excitation picture that is observed (inferred,
perhaps) in the Sun. The background vertical stratification is an
empirically derived (Hanasoge et al. 2006), convectively sta-
bilized form of model S (Christensen-Dalsgaard et al. 1996).
The base hydrodynamic method remains unchanged from that

of Hanasoge et al. (2007b): spatial derivatives are calculated using
sixth-order compact finite differences (Lele 1992), and time evo-
lution is achieved through the repeated application of an optimized
second-order five-stage Runge-Kutta scheme (Berland et al. 2006).
The temporal order of accuracy is dropped, because the time step
(2 s) is much smaller than the period of the waves studied here.
The boundaries are lined with damping sponges in order to absorb
(i.e., damp) outgoing waves (Fig. 1). This is to prevent any scat-
teredwaves from reentering the computational domain, aswould be
the case with periodic boundaries. Our attempt to extend the base
scheme to compute the magnetic field terms in equations (2) and
(4) was successful. All derivatives, including the magnetic field
terms, are estimated using sixth-order compact finite differences,
thus maintaining a high order of spatial accuracy. It was observed

Fig. 1.—Plot of the function �(x; y; z) from eqs. (1)Y(4). In panel a, the value
of � at a location far away from the side boundaries is plotted as a function of z.
The vertical boundaries of the computational box are at z ¼ 0:95 and 1.002 R�;
although it is not shown here, the behavior of � at the lower boundary is qual-
itatively similar to that in panel a. In panel b, we show the variation of �with the
horizontal coordinate x at a location far away from the vertical and y boundaries,
with x ¼ 0 serving as one of the side boundaries. As waves approach within
20 Mm of the horizontal and /or 1 Mm of the vertical boundaries, they start to
experience strong damping from the �� term.
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that the :=B term was of a low magnitude, P10�7 pixel�1 (de-
spite the presence of the � term in the induction equation), and
therefore harmless (e.g., Tóth 2000; Abbett 2007). Moreover, the
presence of the damping term �B ensures that:=B is forced to
decay in the damping sponge layers. Validation in one and two
dimensions of the essential numerical method (i.e., without the
� or � terms) is discussed in the Appendix.

2.1. Lorentz Force Controller

As stated in x 2, � retains a value of 1 in the interior and de-
creases with height above the photosphere (Fig. 2a). It attempts
to achieve a two-fold purpose: (1) to reduce the Lorentz force
with increasing altitude above the photosphere and (2) to prevent

the onset of negative pressure effects. The mean hydrodynamic
pressure and density in the Sun drop exponentially with height
in the atmosphere that immediately overlays the photosphere. In
our calculations of MHS states (x 3), it was nearly impossible to
prevent complete pressure and density evacuation in the interiors
of flux tubes of large-magnitude field strengths (1500 G and
more; sadly, nowhere close to the umbral field strengths of up to
6100 G that have been observed in sunspots by Livingston et al.
2006). Moreover, the equilibrium horizontal pressure distribution
takes on strange forms, with the pressure at the center of a flux
tube attaining larger values than the ambient value when the flux
tube radius is forced to increase faster than the corresponding
potential field configuration. In the Sun, the presence of magnetic

Fig. 2.—Dependence of wave scattering on �(z) (eqs. [2] and [4]). Panel a shows functional forms of �, used in two different MHD wave test simulations, termed c
and d. The initial condition, which is the same for both simulations, is a plane wave packet localized at x ¼ �30 Mm, z ¼ �0:2 Mm. Panel b shows fluctuations in bz, which
arise due to the interaction of the wave with the flux tube. Panels c and d display the instantaneous normalized vertical velocity [vz(x; y; z ¼ 0:2 Mm; t ¼ 31 minutes), units
are arbitrary] of the scatteredwaves extracted at a height of 200 kmabove the photosphere from simulations c and d, respectively.An order-of-magnitude difference canbe seen
between the two cases, indicating that the results are somewhat sensitively dependent on the chosen form of �.
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field everywhere and the phenomenon of flux tubesmerging in the
atmosphere (e.g., Pneuman et al. 1986; Bogdan et al. 1996) help to
reduce large gradients in the magnetic field, thereby preventing
complete evacuation in active regions and sunspots while not re-
quiring the flux tubes to flare out too rapidly. We attempt to sim-
ulate this (criterion 1) through the �(z) term. However, since the
equilibrium structure of an active region is as yet unknown, it is not
possible to determine how realistic a chosen functional formof � is.

To determine the impact of �(z) on the wave field, we sim-
ulate the interaction of a wave packet with a relatively weak flux
tube (�100 G at the photospheric level) in a solar-like stratified
medium. Three simulations are performed, a quiet simulation
(‘‘q’’) without any magnetic field and two (‘‘c’’ and ‘‘d’’) with
different functional forms of �, one form of � decaying more
rapidly with height than the other (shown in Fig. 2a). The initial
condition for all simulations was chosen to be a Gabor waveletY
shaped disturbance in vz localized at (x; z) ¼ (�30; �0:2) Mm,
at all values of y. At approximately the instant when the wave
packet reaches the center of the flux tube [located at (x; y) ¼
(0; 0)Mm], we display snapshots of vcz � vqz and v

d
z � vqz in Fig-

ures 2c and 2d , respectively, where the superscripts refer to the
simulation index (q, c, or d). In the presence of a linear scatterer,
one may view the velocity field as being associated with both an
incident and a scattered wave; in this situation, vqz is the incident
wave velocity, and the scattered wave velocities are described by
the differences vc;dz � v qz . It is clear from Figures 2c and 2d that
the extent of the scatter in the simulation where � decays higher
up in the atmosphere (simulation c) is greater by an order of
magnitude than that in simulation d. Perhaps mode conversion,
which has been theoretically shown to become significant when
the plasma � starts to drop, is at play (e.g., Bogdan et al. 1996;
Cally & Bogdan 1997; Crouch & Cally 2003). It may also be
that the magnetic field changes the vz eigenfunction more sig-
nificantly in one case than the other. Essentially, this experiment
tells us that capturing wave interactions in an active region is
somewhat sensitively dependent on the choice of the � function,
or, in other words, on the atmospheric magnetic field distribution
in the vicinity. It underlines the necessity of viewing this effort as
more qualitative than quantitative, since conclusions of the latter
sort require one to explore a formidable parameter space.

3. MHS STATES

Generating MHS states in stratified media can be a nontrivial
task (e.g., Pneuman et al. 1986; Pizzo 1990; Beliën et al. 2002;
Khomenko et al. 2008). Fully consistent approaches that involve
relaxing the MHD equations to low-energy equilibria are difficult
to implement.Moreover, such calculations are beyond the scope of
this effort; we are interested less in theMHS states themselves than
in the manner in which waves interact with them. We invoke the
Schlüter & Temesváry (1958) self-similar magnetic field geometry
and ignore both radiative transfer effects and the satisfaction of the
equation of state. We also remind the reader that the background
stratification has been altered to prevent the onset of uncontrolled
linear growth of convective instabilities, thus changing the opac-
ities in a nonphysical manner. The Schlüter & Temesváry (1958)
approximation tells us that making the following choices for the
radial and vertical magnetic fields, Br and Bz, assures us of the
satisfaction of equation (5) (e.g., Schüssler & Rempel 2005):

Bz ¼ M (z)e�r 2 (z); ð6Þ

Br ¼ �M
r

2
 0e�r 2 (z); ð7Þ

where  0 ¼ d /dz. The above equations (eqs. [6] and [7]) are in
cylindrical geometry; the quantities r and z refer to the hori-
zontal radial and vertical coordinates, where r ¼ 0 coincides
with the center of the flux tube; M is a term that controls the
magnitude of the magnetic field and hence the flux (=�M ); and
 (z) determines the horizontal extent of the flux tube and the rate
at which the flux tube spreads with altitude. The zeroth-order
MHS equations in cylindrical coordinates, which are obtained
by dropping the time and azimuthal dependencies in equation (2),
reduce to

0 ¼ �@rpþ �
Bz

4�
@zBr � @rBzð Þ ð8Þ

along the horizontal (r) direction, and in the vertical (z) direction,

0 ¼ �@zp� �
Br

4�
@zBr � @rBzð Þ � �g: ð9Þ

Equation (8) is integrated over r from 0 to infinity to obtain the
following equation:

pc(z) ¼ p1(z)þ M 2�

4�

1

16

 02

 
� 1

8
 00 þ  2

2

� �
; ð10Þ

where pc(z) is the pressure along the axis (center line) of the flux
tube and p1(z) is the hydrostatic pressure far away from the
magnetic region. The horizontal pressure distribution at a given
value of z can now be computed by integrating equation (8) from
the center outward:

p(r 0; z) ¼ pc(z)þ
�

4�

Z r 0

0

dr Bz @zBr � @rBzð Þ; ð11Þ

Fig. 3.—Example of a flux tube generated according to the recipe of x 3.
Panel a shows the field strength, Bj j ¼ (B2

r þ B2
z )

1=2; panel b shows the field in-
clination angle, arctan (Br /Bz). Perpendicular to the contour lines are spokes that
point in the direction of the downhill gradient. The pressure and density remain
positive over the entire domain. Field strength magnitudes, in units of gauss, and
inclination angles, in units of degrees, are indicated along the contour lines.
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thus, the entire pressure field can be recovered through this pro-
cedure. Simplifying equation (9), we can obtain the density field
from the pressure distribution:

�(r; z) ¼ � 1

g
@z pþ �

Br

4�
@zBr � @rBzð Þ

� �
: ð12Þ

Therefore, upon specifying the parameters M and  (z) in equa-
tions (6) and (7), one can obtain a self-consistentMHS solution that
satisfies the criteria of :=B ¼ 0 and magnetohydrostatic balance.
One must be careful, however, to ensure positive pressure and den-
sity in equations (11) and (12) at all points in the computational
domain. In Figure 3, we showan example of a flux tube that attains
a peak strength of 600 G at the photospheric level; the inclination
of the field at distances away from the center is also shown.

3.1. Seismic Power Deficits and Halos

Theoretical expectations dictate a decrease in modal power
in magnetic regions due to mode absorption and MHD-wave

coupling. Using identical realizations of the source function S
(eq. [2]), we perform two simulations: a ‘‘quiet’’ run with no
perturbation and anMHD counterpart (the ‘‘mag’’ run) that has
the flux tube described in Figure 3 embedded at the center of a
computational box of size 100 Mm ; 100 Mm ; 35 Mm. In
Figure 4 we show the difference in the time-averaged rms wave
power between the quiet simulation and its magnetic counter-
part, normalized by the mean value of the rmswave power of the
quiet case. Both runs were 12 hr long. Because the realizations
are identical, the MHD interactions are the dominant compo-
nent of the quantity RMSmag � RMSq. It is interesting to note
that, depending on the variable under study, the simulations pre-
dict strong variations in the nature and degree of the change in the
wave power. For example, the rms differences in the total velocity,
v tot ¼ (v 2x þ v2y þ v 2z )

1=2, show the presence of a large reduction
in wave power surrounded by an intense halo, whereas the rms
decrease as seen in vz is systematically weaker and has an almost
invisible halo. Figures 4b and 4d show contours of increasing
radii that correspond to field inclinations of [20�, 30�, 40�, 50�].

Fig. 4.—Changes in acoustic power due to MHD interactions (600 G case). Two simulations were performed: one quiet (‘‘q’’), without perturbation, and one using
an MHD calculation (‘‘mag’’), with the flux tube of Fig. 3 embedded in the computational domain. Panel a shows the rms differences of the total velocity, vtot ¼
(v2x þ v2y þ v2z )

1=2, between the quiet and magnetic simulations. Panels b and c display the rms differences seen in vx and vz, while panel d shows the rms values of the
vertical magnetic field fluctuations, bz. Each power difference is normalized by the mean value of the rms power of the corresponding quantity (i.e., vx, vz, or v tot) derived
from the quiet simulation. With increasing radius, the contours in panels b and d show the locations at which the field inclination is [20�, 30�, 40�, 50�]. The field
strengths at these contours are [560, 495, 397, 240] G, respectively. Outside a region of substantial decrease in wave oscillation amplitudes, a halo corresponding to an
increase in the rms power can be seen.
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The halo is seen at inclinations of 50� and higher, while a strong
reduction in wave power is observed at smaller angles. Also, the
robustness of the halo was ensured by verifying its reappearance
in a simulation that used an alternate numerical method, namely,
a second-order constrained transport (CT) technique (Evans &
Hawley 1988).

In order to study these effects further, we computed power
maps in four different frequency bandpasses: 2Y3, 3Y4, 4Y5,
and 5Y6 mHz. Three different components of the velocity were
used in the calculations: vz, vtot, and vhor ¼ (v2x þ v2y)

1=2. We sub-
tract the power maps of the quiet simulation computed in the

same bandpasses in order to reduce the realization noise. The
frequency filters used to recover the power maps and the azi-
muthally averaged power profiles (about the flux tube center)
obtained subsequently are shown in Figure 5. Noteworthy aspects
are that vhor contains the most intense halos, vtot shows a dramatic
increase in rms power in the range 4Y5mHz around the ‘‘umbral’’
region of the flux tube (defined as that within a distance of 8 Mm
from the center of the flux tube), and the rms variation in vz is
somewhat limited in comparison to the rest. These effects (or
some fraction thereof ) could be attributed to changes in the
eigenfunctions caused by the magnetic fields. The appropriate

Fig. 5.—Azimuthal averages of the frequency-filtered wave power maps (600 G case). Panel a shows four filters with bandpasses of 2Y3, 3Y4, 4Y5, and 5Y6 mHz.
Panels b, c, and d display the azimuthally averaged (around the center of the flux tube) normalized noise-subtracted power maps of the quantities vz, vhor ¼ (v2x þ v2y )

1=2, and
vtot, respectively. Each power difference is normalized by the mean value of the rms power of the correspondingly filtered quiet simulation. The quantity vz exhibits the least
change in the rms power of all the variables shown here. Note that vhor and v tot are more difficult to interpret because sign information is lost (vq;mag

hor ; vq;mag
tot � 0). The two

vertical lines in panels b, c, and d are labeled with the magnetic field strength and the inclination at these locations.
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identification of the nature of these increments and decrements
is evidently an important issue.

Another set of power maps is displayed in Figure 6. The top
row of panels contains the power maps of the 600 G flux tube,
whereas the middle and bottom rows show the results from a sim-
ulation with a more realistically endowed sunspot: a 3000 G flux
tube (simulation size: 200 Mm ; 200 Mm ; 35 Mm). The flux
tube configuration is very similar to that discussed in Cameron
et al. (2007); consequently, we do not show it here. The images
in the middle row are strikingly similar in structure to the ob-
servations of Moretti et al. (2007), who see power increasing
progressively with frequency (Fig. 1 of their paper). We see a
large decrease in the rms power as felt by the pressure fluctua-
tions (interpreted crudely as intensity) in the bottom rowof panels.
There is some qualitative agreement between the simulations
and the intensity observations by Moretti et al. (2007); however,
the high-resolution Hinode measurements of intensity in active
regions by Nagashima et al. (2007) are unfortunately not so easily
woven into this computational web. Intensity observations, as

Nagashima et al. (2007) note, are far more difficult to interpret
than those in velocity because of the former’s sensitivity to ion-
ization, pressure, density, etc., and the lack of a one-to-one cor-
respondence with a simple thermodynamic variable.

Acoustic halos around the edges of active regions have been
widely observed (e.g., Braun et al. 1992; Brown et al. 1992;
Balthasar et al. 1998; Donea et al. 2000). While Balthasar et al.
(1998) have reported enhancements in oscillation velocity power
within magnetic regions and in low-frequency (�2 mHz) band-
passes as well, a large number of other observations seem to show
halos only in a high-frequency bandpass and in predominantly
weakly magnetic areas surrounding the active region (Hindman
& Brown 1998). It is interesting to note that some qualitative
features also seen in observations are reproduced in the simu-
lations: (1) at the edge of the flux tube (at�19Y20Mm in Fig. 5,
Bj j � 7Y12 G), only the highest frequency bandpass shows a
faint power enhancement, which is on the order of 2%Y3% in vz
and even less in the other components; (2) the increase in thewave
power in the umbra of the flux tube in the 4Y5 mHz bandpass

Fig. 6.—Changes in acoustic power due to MHD interactions as observed in vz, the vertical velocity (top and middle), and p, the pressure (bottom). The gray scale is
fixed to the range [�50%, +15%], where each map has been normalized by the value of the quiet power in that frequency range. In both simulations, the source dis-
tributions are spatially uniform. The qualitative and quantitative differences seen between the first two cases (top and middle) could be ascribed to the magnetic field
strength, the location of the � ¼ 1 layer, and the source depth. We use pressure fluctuations as a proxy for observations in intensity. Although more careful studies are
required in order to be able to deconstruct these results into participatory elements, it can be said that the computations reproduce many features in the velocity
observations (e.g., Moretti et al. 2007).
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(Fig. 5d ) is similar to enhancements seen in the magnetic cores
of active regions (Balthasar et al. 1998); and (3) the enhance-
ments grow with frequency, as can be seen in the simulation of
the 3000 G flux tube in Figure 6 and in observations byMoretti
et al. (2007). It would be rather ludicrous to make quantitative
comparisons between observations and the simulations because of
the simplified nature of these calculations: the lack of radiative
heat transfer, realistic wave mode damping, a penumbra, con-
vection, unmodeled atmospheric magnetic fields, etc.

The speculation that enhanced seismic emission in the vi-
cinity of active regions may be the causative mechanism of the
acoustic halo goes back to the work of Brown et al. (1992). More
recently, Donea et al. (2000) have drawn similar conclusions from
holography-related analyses of active region observations. How-
ever, this theory does not explain the wave power increase in the
simulations, because in our calculations, wave source ampli-
tudes are statistically homogeneously distributed in space (in
the horizontal directions), with the exception of areas close to
the boundaries. Magnetic regions reconfigure the energy of the
background medium. Therefore, the presence of sources in the
interior of the flux tube essentially complicates matters because
the incipient waves may have energies that are unlike those of
waves in quiet regions. Moreover, the relative locations of the
� ¼ 1 layer with respect to the acoustic reflection zone, the � ¼ 1
line, and the sources probably play an extremely important role
in determining the wave energy distribution as a function of fre-
quency. All the variables in the simulation are extracted at a
constant geometrical height (200 km above the photosphere),
which is clearly a simplification incongruent with reality.Whether
or not the observation height is a significant contributor is yet to
be determined. Further investigations are currently in progress
and will be the focus of a future paper.

4. DISCUSSION

We have discussed and validated a numerical method with
which to systematically study linear MHD interactions in the
context of helioseismology. The importance of including the
ambient atmospheric magnetic field in the vicinity of magnetic
flux concentrations is underlined here. Through a phenomeno-
logical model of the gradient smoothing that the ambient mag-
netic field presumably effects, we have shown that there can be
significant differences in estimates of the oscillation velocity in-
side active regions. Thus, forward models that attempt to recover
the magnetic field distribution on the basis of shifts in travel

times or other helioseismic metrics must in fact address this issue.
Computational studies pertaining to oscillation power reduction
in active regions are also quite sensitive to these effects.
Results from simulations of waves interacting with flux tubes

that have peak photospheric field strengths of 600 and 3000 G
are discussed in some detail. Not only is a significant reduction
in wave power observed, but a halo that surrounds the flux tube
is also seen.Many features in the velocity observations of active
regions are reproduced by the simulations. High-frequency wave
power halos are also observed to envelop solar active regions;
Braun et al. (1992), Brown et al. (1992), and Donea et al. (2000)
suggest enhanced seismic emission in the vicinity as being the
causative mechanism. However, the simulations contain no such
seismic enhancements, indicating that the physics behind the for-
mation of the halo is possibly governed by MHD phenomena. A
theory that explains the appearance of these excess oscillations
will be discussed in a future publication.
Using the techniques described here, we wish to develop helio-

seismically consistent forward models of thin flux tubes and
sunspots. In the context of thin flux tube models, preliminary in-
vestigations have already shown that the peak flux tube magnetic
field strengths of about 80 G (Duvall et al. 2006) as observed by
the MDI instrument are too small by 2 orders of magnitude to
cause the observedwave phase shifts. This is a consequence of the
relatively low resolution of the MDI instrument, which is unable
to capture flux tubes in the 100Y200 km size range (T. Duvall, Jr.
2007, T. Bogdan 2007, andR. Cameron 2007, private communica-
tions). Simulations with such small features can be computation-
ally challenging due to resolution restrictions and the associated
computational overhead. However, interesting subwavelength
physics associated with thin flux tubes, namely, the near-field
evanescent modes (the ‘‘jacket ’’; e.g., Bogdan & Cally 1995;
Hanasoge et al. 2008) can be studied in greater detail with these
simulations. These investigations are exciting, especially when
seen in the context of the availability of high-quality observations
and the upcoming Solar Dynamics Observatory (SDO) mission.

This work was possible with funding from grant HMI NAS5-
02139. Thanks to Keiji Hayashi for the instructive discussions
related to theCTway of dealingwithmagnetic fields.Also, thanks
to Robert Cameron, Ashley Crouch, Elena Khomenko, Tom
Bogdan, and Tom Duvall, Jr. for many useful conversations.

APPENDIX

VALIDATION: TWO-DIMENSIONAL ANALYTICAL SOLUTION

Take a two-dimensional slab of finite thickness (L; L). Let the coordinates be labeled (x; z), and assume the presence of a back-
ground magnetic field of the form B0 ¼ B0(x)ez. The background density is assumed to be unchanged by the magnetic field and is
spatially nonvarying; the pressure p0 is adjusted so that a pressure balance is achieved. We choose a velocity of the form v ¼
(vxex þ vzez) exp i(kz� !t)½ �, where vx ¼ vx(x), vz ¼ vz(x), k is the wavenumber,! is the frequency, and t is time. Background quantities
are denoted by the subscript ‘‘0.’’ Themagnetic field and pressure fluctuations are denoted byB and p, respectively. Since this solution is
used to validate the code, we use the linearized ideal MHD equations, which are equations (1)Y(5) without the boundary dissipative � or
Lorentz force controller � terms; we also set the source term S ¼ 0. Starting with the adiabatic energy equation (after incorporating the
continuity equation), we have

@t p ¼� c2�0:= v� vx@x p0; ðA1Þ

c2 ¼ �1p0

�0
; ðA2Þ

@x p0 ¼� @x
B2
0

2

� �
; ðA3Þ
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� 1

�0
@x p ¼ 1

i!�0
�1@x

B2
0

2

� �
@xvx þ ikvzð Þ� �1p0 @

2
x vx þ ik@xvz

� ��

þ@xvx@x
B2
0

2

� �
þ vx@

2
x

B2
0

2

� ��
ei
(kz�!t);

� 1

�0
@z p ¼ k

!�0
��1p0 @xvx þ ikvzð Þ þ vx@x

B2
0

2

� �� �
ei
(kz�!t);

where equation (A3) is the pressure distribution created by balancing the Lorentz force due to the background magnetic field and �1 is
the first adiabatic index. Moving on to the x-momentum equation, and applying equation (A4), we find that

vx ¼
1

�0!2
�1@x

B2
0

2

� �
(@xvx þ ikvz)� �1p0 @

2
x vx þ ik@xvz

� �
þ @xvx@x

B2
0

2

� ��

þ vx@
2
x

B2
0

2

� �
þ k2vxB

2
0 � B0@

2
x (vxB0)� @xB0@x(vxB0)

�
: ðA6Þ

Similarly, upon the application of equation (A5) to the z-momentum equation, it may be verified that

ikvz ¼
!2

c2k2
� 1

� ��1

@xvx; ðA7Þ

which leads to the relation

@xvx þ ikvz ¼ �(x)@xvx; ðA8Þ

�(x)¼ 1� c2k2

!2

� ��1

: ðA9Þ

Upon further manipulation, a second-order differential equation for the eigenfunction vx may be obtained:

@2x vx þ�(x)@xvx þ �(x)vx ¼ 0; ðA10Þ

�(x) ¼ 2� �1�
2

�1p0� þ B2
0

@x
B2
0

2

� �
; ðA11Þ

�(x) ¼ �0!
2 � k2B2

0

�1p0� þ B2
0

: ðA12Þ

Equation (A10) was solved using the MATLAB boundary value problem solver bvp4c. The boundary conditions were chosen to be
vxjx¼0;L ¼ 0, with the additional condition of @xvxjx¼0 ¼ 1 required in order to solve for the eigenvalue !. Because of the linearity of the
problem, there is no loss of generality due to this third condition. We show a sample eigenfunction calculation in Figure 7 for the resonant
mode with � ¼ 5:09 mHz; theory and simulation show good agreement. The background magnetic field was chosen to be B0 ¼ b̃(2x)1

=2,
with b̃ ¼ 71:5 GMm�1/2,�1 ¼1:5, p0 ¼ 1:21 ; 105 � B2

0 /2 dyne cm
�2, and �0 ¼ 2:78 ; 10�7 g cm�3, where x is expressed in units of Mm.

Fig. 7.—Analytically computed (solid line) and numerically simulated (dot-dashed line) normalized eigenfunctions for � ¼ 5:09 mHz, with k ¼ 0. For convenience, the
backgroundmagnetic fieldwas chosen to beB0 ¼ b̃(2x)1

=2. Although it is not shown here,we have also tested the simulation at nonzero values of k and found good agreement.
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