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ABSTRACT

Through a series of numerical simulations of the near-surface acoustic wavefield of the Sun, we show the utility
of the forward approach in local helioseismology.We demonstrate and apply a method to subtract a large fraction of
the realization noise from the simulated data. The ability to attain high signal-to-noise ratios from brief forward
calculations implies that computational resources are less of a bottleneck, making this alternate method for inves-
tigations of the solar interior very feasible.We put this method to use by deriving sensitivity kernels for sound-speed
perturbations and source suppression for the background state in our computations using techniques of time-distance
helioseismology, all from merely 48 hr of artificial data.

Subject headings: hydrodynamics — Sun: helioseismology — Sun: interior — Sun: oscillations — waves

1. INTRODUCTION

For almost two decades, methods of local helioseismology
(e.g., Hill 1988; Braun et al. 1987) have been applied to infer
properties of the solar interior, with varied degrees of success
(for a comprehensive review, see Gizon & Birch 2005). The pre-
dominant approach is to construct and subsequently invert mod-
els that relate observations to interior properties. As observations
have become increasingly sophisticated, the need for refined for-
ward modeling has become apparent. One reason the forward
approach is crucial is that although the resonant mechanical
modes of the Sun (the diagnostic agents of helioseismology)
have been studied carefully, there are still many unmodeled cu-
rious wave properties that may prove significant. For example,
finite wavelength effects cast doubt on the validity of the ray ap-
proximation in some situations (e.g., Hung et al. 2001; Couvidat
et al. 2004); magnetic fields in the case of sunspots are poten-
tially nontrivial contributors to the wavefield. Although these
implications have been known for a while now, a systematic
means of investigating such factors has only recently been con-
structed. Such studies are difficult to conduct by purely analytical
means, requiring the introduction of numerical methods to solve
the constituent governing equations of wave motion (e.g., Tong
et al. 2003; Hanasoge et al. 2006; Parchevsky & Kosovichev
2006; Shelyag et al. 2006).

The effects of sound-speed perturbations on acoustic waves
have been investigated in the past (e.g., Jensen et al. 2003; Jensen
& Pijpers 2003; Birch et al. 2004). In fact, Jensen et al. (2003)
constructed a forwardmodel to compute thewavefield associated
with a sunspot-type sound-speed profile containing a near-surface
decrease in the sound speed and an increase in the deeper layers.

Sensitivity kernels aremathematical structures that relate shifts
in observational metrics such as travel times, resonant frequen-
cies, etc., to the anomalies that cause them. Birch & Kosovichev
(2000) and Gizon & Birch (2002) introduced finite frequency
sensitivity kernels for helioseismology (note: we will use the

terms ‘‘finite wavelength’’ and ‘‘finite frequency’’ interchange-
ably in future discussions) that include wave effects in the Born
limit, to invert for interior sound speed, damping, and source per-
turbations. The computation of these kernels is a nontrivial affair.
Moreover, these kernels are obtained in the single-scattering limit,
and the Born approximation itself may not be applicable for prob-
lems such as inversions of sunspots (A. C. Birch 2007, private
communication). In this paper, we measure kernels at the photo-
spheric level from simulations in two cases for which the Born
limit is valid and published kernels are available for comparison
(Gizon & Birch 2002; Birch et al. 2004).
We also introduce the idea of noise subtraction, on the basis

of which we can obtain large signal-to-noise ratio (SNR) im-
provement in our simulations. When applying this concept, for
certain problems, with as little as 40 hr of computing time, the
signal can be boosted by so much that the eventual SNR is at
the same level as that of 2 yr of solar data. In x 2 we discuss the
numerical procedure applied to compute the wavefield. The idea
of noise subtraction is introduced in x 3, along with results that
demonstrate its effectiveness. Travel times for the simulated
wavefield are estimated with the technique of surface focusing
in x 4. We show how noise subtraction affects the travel times
and also validate the results from the simulations in this section.
An alternative method to compute kernels for helioseismology is
shown to be effective in x 5. We summarize our results and draw
conclusions in x 6.

2. THE SIMULATION

The acoustic wavefield is simulated by numerically solving the
linearized three-dimensional (3D) Euler equations in Cartesian
geometry:

@t� ¼ �: = (�0v)� ��; ð1Þ

@tv ¼ � 1

�0
:p� �

�0
gêz þ S� �v; ð2Þ

@tp ¼ v = :p0 � �0c
2: = v� �p; ð3Þ

where � and �0 are the fluctuating and time-stationary back-
ground density, respectively; p and p0 are the fluctuating and time-
stationary background pressure, respectively; v is the fluctuating
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vector velocity; g ¼ g(z) is gravity with direction vector �êz;
c ¼ c(x; y; z) is the sound speed; � ¼ �(x; y; z) > 0 is a damp-
ing sponge that enhances wave absorption at the boundaries; and
S is the source term. We employ a Cartesian coordinate system
(x, y, z), with êz denoting the unit vector along the vertical or
z-axis and t denoting time. In sequential order, equations (1)Y(3)
enforce mass, momentum, and energy conservation, respectively.
In interior regions of the computational box (away from the bound-
aries), solutions to the above equations are adiabatic, since equa-
tion (3) is applicable only in the case of adiabatic oscillations
(e.g., Hanasoge et al. 2006) and there are no other damping terms.

In our computations, waves are excited by a vertically directed
dipolar source function, S ¼ S(x; y; z; t) êz, similar to the func-
tion described inHanasoge et al. (2006). The function S(x; y; z; t)
is highly localized along the z-axis, described by aGaussianwith a
FWHMof 200 km.Adopting the approach described inHanasoge
et al. (2006), we start our analysis in the frequency-horizontal
wavenumber Fourier space. Because scattering processes are
sensitive to the frequency and wavelengths of interacting waves,
we attempt to mimic the solar acoustic power spectral distribu-
tion as closely as possible (see Fig. 1). As for the dependence of
the excitation function on horizontal wavenumbers, each coef-
ficient in Fourier space is assigned a value from the output of a
Gaussian-distributed zero-mean random number generator (the
Ziggurat algorithm, available online fromNETLIB). This results
in uniform power across wavenumbers, which is somewhat dif-
ferent in the Sun because the sources are at granular scales and
there is some dependence of power on wavenumber. To achieve
the demands placed on the frequency dependence of the spec-
trum, we multiply these coefficients by an a priori specified
frequency envelope. Lastly, we prescribe the excitation function
so that it possesses no power beyond (to the right of ) the f-mode
ridge, where modal power in the Sun is practically nonexistent
anyway. The inverse Fourier transform of this function provides
us with a spatiotemporal description of the multiple-source ex-
citer, S(x; y; z; t).

In the Sun, the competing effects of damping, which has a
superlinear frequency dependence, and mode mass, which de-
creases with frequency, create a power maximum at � ¼ 3 mHz.
However, one immediately realizes that solar damping rates are
by no means simple functions of frequency, with the conse-
quence that fully including these dissipation rates in our time
domain calculations is made all but impossible. Moreover, the

aim of these calculations is to deconstruct the influences of per-
turbative forces, one of which undoubtedly is damping (e.g.,
Gizon & Birch 2002). Therefore, although approximate repre-
sentations of the solar damping function could be incorporated
into the equations above, we make the active choice to leave
them out at present, with the full intention of pursuing a greater
understanding of the effects of dissipation at a future occasion.

Revisiting the background state, we use the time-stationary
properties p0, �0, g, and c given by the convectively stable model
of Hanasoge et al. (2006), based on model S (Christensen-
Dalsgaard et al. 1996). Without additional artificial stabilization,
simulations of wave activity in the near-surface layers tend to
blow up very rapidly due to exponentially growing linear con-
vective instabilities. This stabilization results in a modified dis-
persion relation for p-modes, not quite the same as it is for
the Sun, but mercifully, close enough that existing methods
of helioseismology may be applied with few alterations. The
functional dependence of c presented in the model of Hanasoge
et al. (2006) is entirely radial (vertical); for experiments with
sound-speed perturbations, we alter c so that it becomes a 3D
function of space while keeping p0 and �0 constant. The latter
variables are kept constant so that the delicate hydrostatic
balance remains undisturbed, which, if tampered with, results
in a Kelvin-Helmholtz instability. As seen in equation (4), this
means that when we alter the sound speed and not the pressure
or density, the first adiabatic index �1 changes in the same sense,
since

c ¼
ffiffiffiffiffiffiffiffiffiffiffi
�1 p0

�0

s
: ð4Þ

It can be shown that the degree of convective instability, char-
acterized by the Brünt-Väisälä frequency N (N 2 < 0 indicates
instability) in equation (5), increases when �1 (or c) is reduced:

N2 ¼ g
1

�1

@ ln p0

@z
� @ ln �0

@z

� �
: ð5Þ

Consequently, all our theoretical experiments are with local
increases in sound speed. Our expectation is that decreases in
sound speed affect helioseismic metrics in the opposite sense
as corresponding increases would.

Fig. 1.—Comparison of wavenumber-averaged power profiles of MDI high-resolution data (dot-dashed lines) and simulations (solid lines) as a function of
frequency. The f-mode power distribution in (a) is quite representative of the observations. Because of the lack of damping, the p-mode power distribution in (b) does
not do quite so well. A phase-speed filter (filter B of Birch et al. 2004) was applied to obtain (b).
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2.1. Numerical Algorithm

The computational domain is a cuboid that straddles the solar
surface, extending from approximately 30 Mm below the pho-
tosphere to 2 Mm into the atmosphere. The vertical (radial)
grid spacing is such that acoustic travel time between adja-
cent grid points is constant, while the horizontal grid points
are equally spaced. The damping sponge described in the pre-
vious section (x 2) is placed adjacent to the six boundaries
of the computational box. It is important that the function de-
scribing the damping layer decays sufficiently smoothly away
from the boundary so that no wave reflections occur at the
interface of the absorbent region. Absorbing boundary con-
ditions (Thompson 1990) are enforced at all boundaries. We
choose absorbing over periodic boundaries because we want to
avoid the issue of dealing with periodicities associated with the
presence of a perturbation.

Derivatives are calculated using sixth-order compact finite
differences (Lele 1992). The solution is evolved in time using
an optimized five-stage second-order Runge-Kutta scheme (Hu
et al. 1996). To avoid aliasing, we apply the two-thirds rule
(Orszag 1970), requiring that the maximum captured wave-
number be at most two-thirds the number of grid points. In order
to avoid vertical (radial) aliasing and the subsequent spec-
tral blocking, we apply the dealiasing procedure described in
Hanasoge & Duvall (2007) once every minute in solar time.
We also dealias variables in the horizontal directions by applying
a smooth filter that diminishes the upper third of the spectrum
and leaves the important lower two-thirds untouched (also at the

rate of once per minute). All fast Fourier transforms (FFTs) are
performed using the freely distributed set of routines, the FFTW.
In order to achieve a comparable computationYtoYwall clock

time ratio, the code was parallelized according to the Message
Passing Interface (MPI) Standard. The domain distribution al-
gorithm is similar to the method described in Hanasoge&Duvall
(2006). The computational box is distributed along the y-axis; all
points on the x- and z-axes for a given point on the y-axis are
located in-processor. The data are transposed and redistributed
between processors when the solution has to be filtered andwhen
derivatives along the y-axis need to be computed. It is probably
true that greater parallel efficiencies may be achieved if the do-
main distribution is along all axes. However, incumbent to de-
termining the optimal parallel configuration is the investment
of considerable time, no doubt entailing many tedious hours of
programming and debugging. At present, we only treat relatively
small problems (200 ; 200 ; 40 Mm3 is the biggest box) and
achieve ratios of 1:1 (usually better) computing to real time.
Seeing little merit in further code optimization, we have rele-
gated such investigations to the future.

2.2. Power Spectrum

The modal distribution of power that we recover upon put-
ting together all the ideas discussed above and subsequently
performing the computation is shown in Figure 2. We do not
have a convincing explanation for the oddly shaped interridge
mode tails. Beyond the demarcation of the excitation profile,
seen just below the f-mode ridge, excitation levels drop to zero.
Also, in accordance with the two-thirds rule, the excitation is
Fourier-limited, not extending beyond two-thirds of the spatial
Nyquist wavenumber. The rms spatially averaged velocity as a
function of time is shown in Figure 3; the simulation in this case
is seen to achieve statistical stationarity in 4.5 hr. This timescale
corresponds to at least a few bounces of the largest wavelength
acoustic waves, and presumably full stationarity is reached when
the balance between the forcing and the absorbent layers (at all
boundaries) is struck.

3. NOISE SUBTRACTION

Given that we have full control over the excitation mechanism
and source function, we can achieve a high SNR in the artificial

Fig. 2.—‘‘Quiet’’ power spectrum obtained from a simulation in a 200 ; 200 ;
30 Mm3 box. The horizontal axis is the spherical harmonic degree, l, and the
vertical axis is the frequency, in units of mHz.

Fig. 3.—Spatial rms velocity at the photosphere of a simulation (thick line) as
compared to MDI high-resolution data (thin line) as a function of time. The sys-
tem appears to achieve statistical stationarity 4.5 hr into the simulation. Because
the system is linear, we can scale velocities by an arbitrary factor as long as they
are much smaller than the local sound speed; in this case, velocities have been
scaled so as to allow comparison with solar values.
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data by subtracting the noise out (Werne et al. 2004). In other
words, having computed a source function, we perform two
simulations, one with no perturbations (the ‘‘quiet’’ simulation)
and another with the perturbation of interest (shown in Fig. 4).
Evidence of the ability of this method is demonstrated by dis-
playing the time-averaged rms of the velocity differences be-
tween a quiet and perturbed model in Figure 5b. Compare this to
Figure 5a, which is the time-averaged rms velocity of the per-
turbed model. Subsequently, we can subtract the travel times of
the quiet simulation data from those of its perturbed cousin, and,
depending on the size of the perturbation in comparison to the
wavelength, excellent SNR properties can be achieved. The instan-
taneous difference is shown in Figure 5c. In some cases in which
the perturbation is highly subwavelength in size, the SNR after
noise subtraction is as much as 1000:1. In subsequent sections,
we will elaborate further on the applications of this technique.

4. TRAVEL TIMES WITH SURFACE FOCUSING

The time-distance helioseismic formalism introduced byDuvall
et al. (1993) is based on the computation of cross-covariances
between solar oscillation signals at two locations r1 and r2 on the
solar surface (z ¼ 0). Due to the stochastic excitation of acoustic
waves (by convective motions in the Sun) and to the super-
position of a large number of waves of different horizontal phase
velocities vph ¼ !/k, where k is the horizontal wavenumber and
! is the temporal angular frequency, the cross-covariances are
very noisy and need to be phase-speed filtered and averaged
(Duvall et al. 1997). The Doppler velocity datacube �(r; t) is
phase-speed filtered in the Fourier domain using a Gaussian filter
F(k; !;�) for each travel distance � ¼ r2 � r1j j:

F(k; !;�) ¼ exp � (!=k � v)2

2�v2

� �
; ð6Þ

where the central phase speed v is derived from the solar model
describing the oscillation power spectrum. For p-modes in the
ray approximation, v corresponds to !/k at the lower turning
point of a ray that traverses a horizontal distance � between
successive reflections. The filter width �v is chosen empirically.

Fig. 4.—Vertical cut in the sound-speed perturbation discussed in Fig. 5. The
labels on the isocontours show the amplitude of �c2/c2. The perturbation is cy-
lindrically symmetric about the x ¼ 0 line.

Fig. 5.—(a) Time-averaged rms velocity of the wavefield interacting with a
12Mm sized sound-speed increase (shown in Fig. 4), centered around (x; y; z) ¼
(100 Mm; 100 Mm; �10 Mm). The sound-speed anomaly is entirely invisible
in (a). The darkening toward the spatial edges of the frame is due to the absorbent
sponge at work. (b) Time-averaged rms velocity difference of the perturbed
datacube and its quiet counterpart. The difference between the quiet and perturbed
datacubes is greatest at the location of the perturbation due to enhanced scattering.
(c) Instantaneous difference between the perturbed and related quiet data 100 (solar)
minutes into the simulation. The anomaly is a scatterer, creating ripples in thewave-
field just like a pebble dropped onto the surface of still water. Fine wave structure is
visible at the location of the perturbation.
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The standard method is then to average point-to-point cross-
covariances over an annulus centered on r1 and with a radius�.
Such point-to-annulus cross-covariances are computed for sev-
eral distances� (55 in this paper) and then averaged by groups
of five distances to further increase their SNR. A detailed ex-
planation of all the steps in the analysis process can be found in,
e.g., Couvidat et al. (2006). Table 1 in Appendix A lists the
distances� and phase-speed filter characteristics used here. These
values are slightly different from the solar case because of the
modified description of the background model.

The point-to-annulus cross-covariances are fitted by twoGabor
wavelets (Kosovichev &Duvall 1997), one each for the positive
and negative times. To select the first-bounce ridge, we multiply
the temporal cross-covariances by 14 minute wide rectangular
window functions prior to the fit. The center time t0 of these win-
dows is listed in Table 1. The fitting procedure returns the ingoing
(subscript i) and outgoing (subscripto) phase travel times �i /o(r; �).
The average of these two travel times, �mean(r; �), is at first approx-
imation sensitive only to the sound speed c(r) in the region tra-
versed by thewavepacket (see eq. [7]), and similarly the difference
�diA(r; �) is sensitive only to material flows. Note that by wave-
packet, wemean a collection ofwaves of different frequencies and
wavelengths that satisfy a specific dispersion relation, ! ¼ !(k).

4.1. Results

We separately compute the acoustic wavefield in the pres-
ence of a sound-speed anomaly and the unperturbed counterpart
with the same forcing function. Subsequently, we derive travel-

time maps related to these datacubes by applying the method
described in x 4. Here we focus on results related to a cylindrical
sound-speed perturbation (see Fig. 4) with a horizontal radius of
about 6 Mm, a height of 12 Mm, centered at a depth of 10 Mm,
and with a maximum amplitude of �c2/c2 ¼ 15%. The travel-
timemap corresponding to the distance� ¼ 30:55Mm is shown
in the left panel of Figure 6. In the right panel, the quiet travel-
time map has been subtracted: the noise level is considerably
reduced, asmentioned in x 3. The travel-timemap in the left panel
looks very similar tomaps computed for datacubes obtained from
the Michelson Doppler Imager (MDI) instrument on board the
Solar and Heliospheric Observatory (SOHO) spacecraft, and
because the noise levels between the artificial and real data are
comparable, the choice of the excitationmechanism is somewhat
justified. Figure 7 further shows the impact of the noise sub-
traction method on the travel-time maps.
In Figure 8, the dependence of the azimuthally averaged mean

travel-time perturbations, ��mean(r; �), on the radial distance
from the center of the perturbation is shown by the thick solid
line. The rms variation � of ��mean(r; �) is an estimate of the
uncertainty on this value (the error bars in Fig. 8 are ��). The
thin solid line represents the average of the difference travel-
time perturbation ��diA(r; �) and is close to zero, as expected
from the absence of flows in our simulation.

Fig. 6.—Example of a mean travel-time perturbation map ��mean(r; �) for � ¼ 30:55 Mm. Left: Before the quiet map subtraction. Right: After the subtraction.

Fig. 7.—Cut across the mean travel-time perturbation map ��mean(r; �) from
Fig. 6 at y ¼ 50 Mm. The thin line is from before the quiet map subtraction, and
the thick line is from after the subtraction.

Fig. 8.—Azimuthal average of ��mean(r; �) (thick solid line) and ��diA(r; �)
(thin solid line) for � ¼ 30:55 Mm, as a function of the radial distance to the
sound-speed perturbation center (simulation). The dot-dashed line shows the
mean travel-time shift computed with ray kernels for the background model in
the simulation. The dashed lines show the solution to the forward problem using
Born sensitivity kernels. The solar model in the simulation is slightly different
from the model used to compute the Born kernels, contributing to the difference
between the two travel-time curves.
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4.2. Validation

A first test of the effectiveness of the numerical algorithm
is to see if the simulated power spectrum looks reasonable in
comparison to the solar modal spectrum. The spectrum shown in
Figure 5a seems to satisfy this basic criterion. Secondly, through
ray calculations, we can estimate the mean travel times associated
with the background solar model. Although we do not show this
here, comparisons between the ray-predicted travel times and
those obtained from the quiet simulations further fortify our con-
fidence in the computational method. Next, using Born sensi-
tivity kernels for sound-speed perturbations (Birch et al. 2004),
we can derive the expected ��mean(r; �) (or ��diff ) by evaluating
the right-hand side of the following equation (forward problem):

��mean=diA(r; �) ¼Z Z
S

dr0
Z 0

�d

dz Kmean=diA(r� r0; z;�)
�c2

c2
(r0; z); ð7Þ

where S is the area of the Doppler velocity datacube, d is its depth,
Kmean /diA(r� r0; z;�) are the sensitivity kernels for distance �,
and ��(r;�) is defined as the travel-time shift at the center of the
annulus (whose radius is�). The kernels we use to calculate the
right-hand side of equation (7) were computed for the standard
solar model S (Christensen-Dalsgaard et al. 1996), implying that
the comparison is mostly qualitative, since we use a slightly al-
tered description of the near-surface layers (Hanasoge et al. 2006).
These are point-to-point kernels, azimuthally averaged the same
way as the cross-covariances to produce point-to-annulus kernels.
The ingoing and outgoing point-to-annulus kernels are then either
averaged or subtracted in relation to ��mean and ��diff.

In Figure 8, the dashed line shows the azimuthal average of
��mean(r; �) obtained from equation (7), while the solid line
shows an azimuthal average of the mean travel times obtained
from the simulation. As expected, the two lines are not quite
identical; this is perhaps due to small differences between phase-
speed filter parameters and the background models in the two
cases. Two independent methods were used in this comparison:
the Born approximation, to solve the forward problem, and the
wavefield simulation in conjunction with a code to extract travel
times from these calculations. Next we check to see if the mean
travel-time shifts computed with the ray approximation, shown
by the dot-dashed line in Figure 8, are comparable. As expected,
ray theory, which does not account for wave front healing (e.g.,
Hung et al. 2001), overestimates these shifts but is still relatively
accurate. It is gratifying to see that although the approaches in
these methods differ greatly, there is still close agreement be-
tween the travel times. At this juncture, we consider the nu-
merical method validated for the cases discussed here.

5. KERNELS

Extending equation (7) to account for arbitrary perturbations,
�q(r0), we have

��mean=diA(r;�) ¼Z Z
S

dr0
Z 0

�d

dz Kmean=diA(r� r0; z;�)�q(r0; z); ð8Þ

where for future discussions, we adopt the notation of Duvall
et al. (2006); namely, that ��(r;�) is defined as the travel-time
shift at position r, located at the center of two observation points

spaced a distance� apart.With this change in definition of travel
times, we move from the center-to-annulus geometry of the pre-
vious section (x 4) to a point-to-point description. There are nu-
merous kinds of anomalies (changes in density, sound speed,
pressure, source amplitude, and magnetic fields, to name a few),
each of which is associated with a specific kernel. For pertur-
bations that are spatial delta functions with magnitude M, of
the form �q(r0; z) ¼ M�(r0)�(z� z0), it may be verified from
equation (8) that the convolution on the right-hand side reduces
to (2�)3MK(r; z0;�) (the 2� factors are dependent on the defi-
nition of the delta function), the conclusion being that the travel-
time shifts and the kernel are identical to within a proportionality
constant in this limit. Duvall et al. (2006) incorporated this ap-
proximation to derive a kernel from observations of thousands
of thin magnetic elements on the Sun, justifying it through the
argument that the magnetic flux tubes were all much smaller than
the wavelength of the f-modes used in the analysis. We apply
the same technique to derive (1) a sound-speed sensitivity kernel
(for p-modes) and (2) a source amplitude kernel (using the
f-mode as the diagnostic agent) from 1000 randomly placed
small (1Mm in size) source suppressions (see Fig. 9) for the solar
model and setup in our computations.

We choose this set of kernels to study because Gizon & Birch
(2002) and Birch et al. (2004) have constructed f-mode source
disturbance and p-mode sound-speed perturbation kernels, re-
spectively, allowing us the luxury of comparison. In the source
perturbation kernel of Gizon & Birch (2002), elliptical features
are absent and only hyperbolic features associated with multi-
ple sources are seen; the sound-speed kernels of Birch et al.
(2004) contain a mixture of both elliptical and hyperbolic ridges.
The ability to recover a source kernel from the simulation of
Figure 9 is important because we demonstrate proof of con-
cept of the kernel measurement method devised by Duvall et al.
(2006). The balance between the randomness of the locations of
these elements and the determinism of the sense of the pertur-
bation (all sources are reduced) seems to result in an average
structure in the travel times that looks remarkably like the source
perturbation kernel fromGizon&Birch (2002), as seen in panels
aYd of Figure 10.

Fig. 9.—Time-averaged rms of the difference in velocities from a simulation
with 1000 randomly located 1 Mm sized source suppressions and its unper-
turbed counterpart. In the vicinity of a source suppression, acoustic velocities
are altered; therefore, the hundreds of local maxima in this difference map show
where the sources are diminished. The perturbations are approximately limited
to a 150 ; 150 Mm2 interior square, allowing travel-time shifts associated with
all the anomalies to be computed.
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The technique through which the SNR of the data is im-
proved by enough that it becomes possible to see the travel times
associated with these small features is described in detail by
Duvall et al. (2006). First, the data are phase-speed filtered to
either restrict the acoustic spectrum to waves that travel a given
distance,�, between bounces or to isolate the f-mode ridge. For
all points r ¼ (x; y) in the domain of interest (eq. [8]), the tem-
poral cross-correlation is obtained by inverse Fourier transform-
ing C̃, where

C̃(!; xþ �x=2; yþ �y=2) ¼ ṽ�(!; x; y)ṽ(!; xþ �x; yþ �y);

ð9Þ

which is subsequently fitted to obtain travel times. In equa-
tion (9), ! is the frequency, v(t; x; y) is the velocity signal at
time t and spatial location (x; y), ṽ(!; x; y) represents the Fourier
transform of v(t; x; y), ṽ� is the complex conjugate of ṽ, and
arctan (�y/�x) is the orientation of the travel-time map. Within
the limits of spatial resolution, there were 77 possible orienta-
tions for the simulation that contained the sound-speed per-
turbation [120 ; 120 Mm2 in the (x, y)-plane, resolved with
1442 points] and 83 orientations for the source perturbation case
[200 ; 200 Mm2 in the (x, y)-plane, resolved with 5122 points].
Subsequently, the resulting two-point travel times were dero-
tated by an angle of arctan (�y/�x) and averaged. For the simu-
lation with 1000 suppressions, the image is not only derotated
but averaged around each feature, corresponding to a net total of
83,000 averages. The SNR is still not high enough with this

degree of averaging; only after the travel times of the quiet data-
cube, obtained through the same averaging process, are sub-
tracted do the hyperbolae of the kernel become clearly visible. A
similar averaging algorithm is used to produce the sound-speed
kernel (see Fig. 12 below), albeit the wavefield was simulated in
the presence of only one anomaly.

5.1. Source Kernels

Although themagnitudes and the hyperbolic features are some-
what different, kernels obtained from simulations and theory
(Fig. 10) possess a strong resemblance. It is seen from Figure 1
that the f-mode power distribution is able to match the observa-
tions (and the excitation model of Gizon & Birch 2002) quite
well, so frequency effects are not significant contributors to the
differences in the hyperbolic structures. One possible explana-
tion could be the damping, which is included in theory but not
in the simulations. The absence of solar-like damping has two
important effects: (1) mode power distribution and line widths
differ from the solar counterparts and (2) waves are correlated
across larger distances. The latter implies that travel-time shifts
of waves remain coherent over longer length scales than in the
Sun or the model of, e.g., Gizon & Birch (2002). The other issue
concerns the differing magnitudes of the kernels; perhaps the
method described in Appendix B to scale the travel times is only
approximate. Moreover, the theoretical kernel of Gizon & Birch
(2002) has a spatial integral of zero, while the kernel obtained
from the simulation has a positive bias of 0.5 s (calculated as the
mean travel-time shift of a small off-center region).

Fig. 10.—Kernels of the f-mode source perturbations. Panels (a) and (b) show the mean and left-to-right one-way kernels from Gizon & Birch (2002), respectively.
Plus signs show the measurement points. Upon systematically derotating and averaging the travel-time shifts associated with the 1000 locally deactivated sources from
Fig. 9, subtracting the noise, and scaling the travel times as described in Appendix B, the kernels in panels (c) and (d ) emerge. The lack of elliptical features in these
kernels is perhaps explained by the independence of the sources from the wavefield, both in the theory of Gizon & Birch (2002) and in the simulations. Panel (d ) is
especially compelling because, according to theory, left-to-right one-way travel times should only be shifted for those points that lie closer to the left measurement point.
The power profile of the f-ridge used to recover the travel-time shifts is shown in Fig. 1.
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The travel-time shifts observed in this case are due to reduc-
tions in the cross-correlation amplitude because of local depres-
sions in source strengths. The cross-correlations are biased in
the sense of decreased amplitude because all the sources have
been suppressed, possibly leading to a nonzero value of the in-
tegral of the kernel. In an attempt to correct for this, we tried
another case in which approximately half the perturbed sources
were suppressed and the other half were amplified. To obtain a
meaningful average kernel (shown in Fig. 11), the sign of the
travel times for the source suppressions was flipped, while the
source amplification counterparts were left untouched. In this
case, the integral of the kernel is much smaller than the ampli-
tude, indicating that the bias in the kernel of Figure 10c is most
probably caused by the systematic sense in the perturbation
(suppression).

5.2. Sound-Speed Kernels

The sound-speed kernel of Figure 12a was derived for the
same measurement distance (12.4 Mm) as the one in Figure 12b
(reproduced from the bottom right panel of Fig. 10 from Birch
et al. 2004). Although there are many differences in the ap-
proaches, not the least being the backgroundmodel and damping
rates, the agreement is excellent. This result also illustrates the

ability of the method of noise subtraction to remove the noise
without affecting the signal itself. Although not shown here, we
have noted that as the central frequency of the wavepacket used
to construct the kernel increases, the ellipses become even more
‘‘elliptical,’’ an indicator of raylike behavior. In general, there
is a definite dependence of the shape of the kernel on the filter
parameters.

6. CONCLUSIONS

A numerical method to compute the 3D wavefield in a solar-
like medium was discussed and implemented. The concept of
noise subtraction, a technique whereby the realization noise can
be significantly reduced, was introduced. This method is quite
useful in reducing computational cost by making it possible to
achieve large SNRs even with short simulations. Results from
the simulations were validated using comparisons between the
travel times obtained (1) from the surface focusing method of
time-distance helioseismology, (2) through the application of
approximate Born sensitivity kernels, and (3) from ray theory.
The results agree rather well, showing the validity of these in-
dependent approaches for this particular situation.

We ran a simulation with 1000 randomly located suppressed
sources that was subsequently analyzed by the feature method
of Duvall et al. (2006) to obtain travel-time shifts associated
with the average diminished source. The result closely resem-
bles the source perturbation kernel of Gizon & Birch (2002). A
sound-speed kernel for parameters similar to a case considered
by Birch et al. (2004) was derived. The agreement between Born
theory and simulations in conjunction with time-distance helio-
seismology is impressive. It lends greater confidence to the tech-
nique of direct measurements of kernels from data (Duvall et al.
2006) and the method of noise subtraction. It is interesting to
note that the structure of the kernels is quite sensitive to the
relevant frequency bandpass; high-frequency wave kernels have
pronounced elliptic features displaying raylike behavior. The
source and sound-speed kernels shown here contain aspects of
multiple scattering and in general are not bound by the assump-
tions of the Born approximation. We can also derive sensitivity
kernels for various types of perturbations such as anomalies in
density, pressure, �1, etc., that are relatively difficult to compute
in the Born limit.

The price we currently pay for the ability to perform these
simulations is reduced realism. Damping, which is not accounted
for in our computations, is an important contributor, affecting
travel times (e.g., Woodard 1997) and in general changing the

Fig. 11.—Source kernel obtained by suppressing approximately half the
sources and doubling the strengths of the rest. The integral of the kernel is an
order of magnitude smaller than the amplitude of the kernel.

Fig. 12.—(a) Sound-speed kernel from 24 hr of simulated data (12 perturbed + 12 quiet). (b) Sound-speed kernel reproduced from the bottom right panel of Fig. 10
of Birch et al. (2004). The plus signsmark the measurement points. The kernels have beenmultiplied by the sound speed at the photospheric level in both cases; units are
in 10�2 Mm�2. The agreement is striking. The circular features in (a) are generated by the repeated derotation of travel-time shifts and hence are mainly noise. Both
hyperbolic and elliptical features are visible in this kernel. The power profile of the modes utilized to construct the kernel in (a) is shown in Fig. 1b.
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distribution of modal power and the line widths. A further ap-
proximation in our simulations is the use of an altered back-
ground state; the standard solar model S makes it difficult to
perform linear simulations due to the inherent convective in-
stability of the near-surface layers. It is important for sophis-
ticated forward models to be able to incorporate damping and
an accurate solar model.

The effects of diffractive or wave front healing, a hotly con-
tested phenomenon in geophysics, are currently being investigated
in the context of helioseismology through these simulations. We
will be able to place bounds on detectability and the accuracy of
inversions and to study vector effects such as flows. It will also be
very exciting to disentangle magnetic field effects and determine

if we have a reasonable understanding of the interior structure of
sunspots.

This work was funded by NASA grant HMI NAS5-02139.
The computations were performed on the Stanford Solar group
machines and Columbia, located at NASA Ames. S. M. H. ex-
presses gratitude for the cooperation of the NAS (NASA Ad-
vanced Supercomputing) staff and their helpfulness in extending
the computational resources of Columbia.We would like to thank
Aaron Birch for providing us with one-way Born kernels for
sound-speed perturbations and data for panels a and b of Fig-
ure 10 and panel b of Figure 12.

APPENDIX A

PHASE SPEEDS

Eleven filters of mean phase speed v and width �v are used for different ranges of annulus radii �, as shown in Table 1. The first
column gives the annulus index, and the last column gives the center time t0 of the window function used to measure first-bounce travel
times (see x 4).

APPENDIX B

SCALING KERNELS

Since it is numerically impossible to capture a delta function, we define the anomalies by the following sharply decaying functions:

�c2

c2
¼ 0:1 1� 1

1þ exp ½8:2(1� r)�

� �
; ðB1Þ

�a

a
¼ � 1� 1

1þ exp ½8:9(1� r̃)�

� �
; ðB2Þ

where r ¼ (x2 þ y2 þ z2)1/2 is in units of Mm and (0, 0, 0) is the center of the perturbation (it is vertically localized at the level of the
photosphere). We use the notation of Gizon & Birch (2002) to describe a source perturbation in equation (B2), where a is the strength
of the unperturbed source and the deactivated source is located around the point (x0, y0, z0), with r̃ ¼ ½(x� x0)

2 þ ( y� y0)
2�1/2 (also in

units of Mm) and z0 ¼ �200 km. Since the f-mode is the diagnostic agent in this case, we assume that the anomaly is essentially two-
dimensional (2D) in nature. To transform travel-time shifts to kernel magnitudes for the sound-speed perturbation case, consider the
function from equation (B1) applied to equation (7). Assuming that the kernel varies much slower than the perturbation, we can re-
write equation (7) as

��mean=diA(r) ¼ Kmean=diA(r; 0;�)

Z Z Z
�

�c2

c2
(r0; z) dr0 dz; ðB3Þ

TABLE 1

Annuli and Phase-Speed Filter Parameters

Index

Mean �

(Mm)

�

(Mm)

v

( km s�1)

�v

( km s�1)

t0
(minutes)

1........................................ 6.20 03.7, 04.95, 06.20, 07.45, 08.7 16.40 2.63 19.00

2........................................ 8.70 06.2, 07.45, 08.70, 09.95, 11.2 19.28 2.63 19.17

3........................................ 11.60 08.7, 10.15, 11.60, 13.05, 14.5 22.26 2.63 20.00

4........................................ 16.95 14.5, 15.72, 16.95, 18.17, 19.4 27.24 3.68 25.00

5........................................ 24.35 19.4, 21.87, 24.35, 26.82, 29.3 35.73 3.94 27.50

6........................................ 30.55 26.0, 28.27, 30.55, 32.82, 35.1 40.06 3.94 29.17

7........................................ 36.75 31.8, 34.27, 36.75, 39.22, 41.7 43.25 3.94 30.83

8........................................ 42.95 38.4, 40.67, 42.95, 45.22, 47.5 49.20 3.94 33.33

9........................................ 49.15 44.2, 46.67, 49.15, 51.62, 54.1 55.80 4.46 35.00

10...................................... 55.35 50.8, 53.07, 55.35, 57.62, 59.9 59.25 4.46 36.67

11...................................... 61.65 56.6, 59.12, 61.65, 64.18, 66.7 64.37 4.46 38.33
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which when integrated merely becomes the finite volume of the perturbation in equation (B1). A similar 2D area integration (z ¼
�200 km) is carried out for the source perturbation. Calculating these integrals, the kernel for the sound-speed perturbation (in units
of s Mm�3) is

Kmean=diA(r; 0;�) ¼ 4:164��mean=diA(r); ðB4Þ

and for the f-mode source kernel (in units of s Mm�2),

Kmean=diA(r; 0;�) ¼ �0:3056��mean=diA(r): ðB5Þ
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