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ABSTRACT

Perfectly matched layers are a very efficient way to absorb waves on the outer edges

of media. We present a stable convolutional unsplit perfectly matched formulation

designed for the linearized stratified Euler equations. The technique as applied to the

Magneto-hydrodynamic (MHD) equations requires the use of a sponge, which, despite

placing the perfectly matched status in question, is still highly efficient at absorbing

outgoing waves. We study solutions of the equations in the backdrop of models of

linearized wave propagation in the Sun. We test the numerical stability of the schemes

by integrating the equations over a large number of wave periods.
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1. Introduction

The choice of appropriate boundary conditions in simulations remains a significant chal-

lenge in computational physics. Amidst the vast number of options that exist, a widely

invoked construct is that of the absorbing boundary, one that is expected to relieve the

computational domain of outgoing waves or other structures without affecting the solu-

tion in the region of interest (for a review, see e.g., Colonius 2004). A number of different

methods exist to accomplish this, such as an attenuating ‘sponge’ (e.g., Lui 2003; Colonius
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2004), characteristics-based boundary conditions (e.g Thompson 1990), an artificially im-

posed supersonic outward directed advective flow (e.g., Lui 2003), perfectly matched layers

(PMLs; Bérenger 1994), etc. Unfortunately, a number of these methods is afflicted with

disadvantages, a primary cause of concern being that of absorption efficiency. For example,

the characteristics-based boundary conditions do not perform very well when the incident

waves at the boundary are significantly inclined - and a fair degree of reflection is observed.

The sponges are better at absorbing the waves and are relatively easy to implement; how-

ever, the reflectivity can still be substantial.

The criterion of low reflectivity is perhaps best satisfied by the PML formulation, devel-

oped first by Bérenger (1994) as an absorbing layer for the Maxwell equations. The central

idea of this technique lies in performing an analytic continuation of the wave vector into

the complex plane. Wave vectors perpendicular to the boundary are forced to assume a

decaying form in the complex plane, thereby dramatically reducing the amplitudes of the

waves in the boundary PML region. In the absence of discretization errors, the PML as

set out by Bérenger (1994) is highly absorbent. After numerical discretization however,

there are weak associated reflections. An important issue in the classical split formulation

of Bérenger (1994) is that the absorption efficiency decreases rapidly at grazing incidence

(e.g., Collino & Monk 1998; Winton & Rappaport 2000).

There have been numerous advances in constructing stable analytic continuations of

wave vectors in the boundary region. In particular, the stable convolutional PMLs (C-PML;

e.g., Roden & Gedney 2000; Festa & Vilotte 2005; Komatitsch & Martin 2007; Drossaert

& Giannopoulos 2007), contain a Butterworth filter inside the PML, thereby dramatically

improving the absorption efficiency at grazing incidence. This formalism was adopted to

the study of waves in anisotropic geophysical media by Komatitsch & Martin (2007); the

numerical stability of said technique was studied by Komatitsch & Martin (2007); Meza-

Fajardo & Papageorgiou (2008). Extensions to the poro- and viscoelastic cases have been

introduced by Martin et al. (2008) and Martin & Komatitsch (2009), respectively. Our goal

in this contribution is to develop a C-PML for the 3D linearized ideal MHD equations in

stratified media.

Astrophysical media such as stellar interiors and atmospheres may be strongly stratified

and highly magnetized. Simulating wave propagation in such environments is of interest

because in understanding the effects of stratification and magnetic fields on the oscillations,

we may be able to better interpret observations and constrain certain properties of the ob-

ject in question. In particular, we focus on the Sun, a star that has been well studied and for

which high-quality observations exist. The interior of the Sun is opaque to electromagnetic

waves - consequently, only photons that arrive from very close to the surface (photosphere)

of the Sun are visible. Helioseismology is the inference of the internal structure and dy-

namics of the Sun by observing the surface manifestation of its acoustic pulsations (e.g.,

Christensen-Dalsgaard 2002; Gizon & Birch 2005; Gizon et al. 2010). Armed with accurate

interaction theories of waves and measurements of the acoustic field at the surface, one

can attempt to determine the sub-surface structure and dynamics of various solar features

such as sunspots (see e.g., Gizon et al. 2009), large-scale meridional flow, interior con-

vective length scales, etc. In order to construct these interaction theories, it is important
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to simulate and study small amplitude (linear) wave propagation in a solar-like medium

- filled with scatterers like sunspots or mean flows. The time scales of wave propagation

are typically much smaller than the rate at which the scatterer itself evolves; thus one

may invoke the assumption of time stationarity of the background medium. Numerical

simulations of waves in solar-like media have been performed by numerous groups (e.g.,

Werne et al. 2004; Hanasoge et al. 2006; Shelyag et al. 2006; Khomenko & Collados 2006;

Cameron et al. 2007; Parchevsky & Kosovichev 2007; Hanasoge et al. 2008; Hanasoge 2008;

Cameron et al. 2008). Two groups in particular (Khomenko & Collados 2006; Parchevsky

& Kosovichev 2007) currently utilize the classical split PML formulation in order to solve

the wave equations in stratified media. There exist drawbacks in these formulations. For

example, Khomenko & Collados (2006) have noted that there are long term instabilities

associated with their method. The technique discussed in Parchevsky & Kosovichev (2007)

involves the addition of a small arbitrary constant (see Eq. [21] and related discussion

of their article) that could possibly be acting as a sponge; it is unclear if their method

is perfectly matched after the introduction of this constant. The modal power spectrum

that Parchevsky & Kosovichev (2007) display in Figure 9 of their article shows substantial

reflected power from their lower boundary, atypical of perfectly matched formulations.

The plan of this article is as follows: in Section 2, we recall the linearized ideal MHD

equations and discuss the C-PML method as was previously developed for the seismic wave

equations. The C-PML is then extended to the stratified Euler/MHD equations in Section

3 and results from numerical tests are discussed. We summarize and conclude in Section 4.

2. The linearized ideal MHD equations

As discussed in the introduction, we consider a system with a steady background, the wave

equations are written as small perturbations around this state. The assumption of small

amplitude wave perturbations is consistent with observations of solar and stellar oscilla-

tions (e.g., Christensen–Dalsgaard 2003; Bogdan 2000). In the equations that follow, all

quantities with a subscript ‘0’ denote the steady background properties while the unsub-

scripted terms represent the fluctuations around the corresponding property. All bold faced

terms represent vectors.

∂tρ = −∇·(ρ0v), (1)

∂t(ρ0v) = ∇ ·
[

BB0

4π
+

B0B

4π
−

(

p+
B0 ·B

4π

)

I

]

− ρg0ez

+ S(x, y, z, t), (2)

∂tp = −c20ρ0∇·v − v·∇p0, (3)

∂tB = ∇ · (B0v − vB0) , (4)

∇ · B = 0. (5)

In order, these are the equations of continuity (Eq. [1]), momentum (Eq. [2]), adiabaticity

(Eq. [3]), induction (Eq. [4]), and divergence-free field (Eq. [5]). The terms ρ and p denote

density and pressure, B = (Bx, By, Bz) is the magnetic field, g0 is the gravity, c0 the sound

speed, and v = (vx, vy, vz) is the velocity. A Cartesian coordinate system (x, y, z) with
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unit vectors (ex, ey, ez) is adopted. The identity tensor is I = exex + eyey + ezez. The

momentum equations are forced by an arbitrary spatio-temporally smooth source function

S. All background terms p0, ρ0, c,B0 are assumed to be heterogeneous, i.e., functions of

(x, y, z) and g0 = g0(z). Note that we have assumed the background medium to be non-

moving, i.e., that v0 = 0. The extension to the v0 6= 0 situation requires no additional

treatment at the boundary as long as the background velocity is zero in this region.

2.1. PMLs and C-PMLs

Consider a wave propagating in the z direction, towards the upper boundary. For now,

ignoring the fact that the medium is stratified, we have vz ∼ Aei(kzz−ωt), where A is the

amplitude of the wave, kz is the wavenumber along the vertical direction, ω the frequency,

and t, time. The classical PML of Bérenger (1994) prescribes the following transformation

for kz:

kz → kz

[

1 − d

iω

]

, (6)

where d = d(z)f(x, y, z0) ≥ 0 is a damping parameter and z = z0 is the vertical coordinate

corresponding to the entrance of the layer. We include the term f(x, y, z0) to account for

the possibility of strong wave speed variations in the horizontal (non-PML) directions at

z = z0 (i.e., at the entrance of the PML). Note that the damping term applies only to kz ; i.e.

the wavenumbers kx and ky remain unchanged. It has been shown that, cast in the form of

equation (6), the PML is unstable in a number of situations (for f(x, y, z0) = 1), including

in the presence of mean flows (e.g., Hu 2001; Appelö et al. 2006), and in anisotropic

media (e.g., Bécache et al. 2003; Komatitsch & Martin 2007, also personal communication,

Khomenko 2009). A version of the PML with a more general transformation was introduced

by Roden & Gedney (2000) for Maxwell equations and adapted to the seismic wave equation

by Festa & Vilotte (2005), Komatitsch & Martin (2007), and Drossaert & Giannopoulos

(2007). They applied the following relation:

kz → kz

[

κ+
d

α− iω

]

, (7)

where α = α(z) > 0 and κ = κ(z) ≥ 1 are additional parameters. In particular, the

inclusion of α, i.e. of a filter, helped improve the issue of damping waves with grazing

incidence at the boundaries. We follow the formalism set out in Komatitsch & Martin (2007)

and derive the equations for the convolutional PML. The transformation of equation (7)

corresponds to a grid stretching of the relevant coordinate:

z̃ =

(

κ+
d

α− iω

)

z. (8)

Derivatives along the vertical direction in equations (1) through (5) are now computed

in terms of the stretched coordinate. In other words, the vertical derivative of a generic

variable ψ(x, y, z, t) is transformed according to:

∂zψ → ∂z̃ψ. (9)

The term ∂z̃ψ may be rewritten as:

∂z̃ψ =

[

1

κ
− d/κ2

(d/κ+ α) − iω

]

∂zψ. (10)
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The first term inside the parenthesis on the right-hand side of equation (10) is easily

obtained by dividing the derivative by κ. The second term is more complicated because it

involves products in the temporal Fourier space of two terms with frequency content; this

results in a convolution in time. In order to compute these convolutions, Roden & Gedney

(2000); Festa & Vilotte (2005); Komatitsch & Martin (2007) use a recursion formula to

update the convolution at each time step. Instead of applying a recursive relation, here

we use a differential equation to recover χ(x, y, z, ω) = s̄∂zψ (also done in the auxiliary

differential equation formulation of Gedney & Zhao 2010; Martin et al. 2010), where

s̄(x, y, z, ω) = − d/κ2

(d/κ+ α) − iω
. (11)

Let the time history of χ be such that χ(x, y, z, t ≤ 0) = 0. In addition, we also require

∂zψ = 0 for all t ≤ 0. Then, the following differential equation for χ

∂tχ = − d

κ2
∂zψ −

(

d

κ
+ α

)

χ, (12)

ensures that χ has the desired frequency response, i.e.,

χ(x, y, z, ω) = − d/κ2

(d/κ+ α) − iω
∂zψ. (13)

The differential equations for the C-PML may now be written as:

∂tρ = −∇h·(ρ0v) − ρ0∂z̃vz − vz∂z̃ρ0, (14)

∂t (ρ0v) = ∇h ·
[

BB0

4π
+

B0B

4π
−

(

p+
B0 · B

4π

)

I

]

+ ∂z̃

[

BzB0

4π
+
B0zB

4π
−

(

p+
B0 · B

4π

)

ez

]

− ρg̃0ez − σρ0v + S, (15)

∂tp = − c20ρ0∇h·v − c2ρ0∂z̃vz − v·∇hp0 − vz∂z̃p0, (16)

∂tB = ∇h · (B0v − vB0) + ∂z̃ (B0zv − vzB0) , (17)

where ∇h = ex∂x + ey∂y represents the derivatives in the non C-PML directions, and

g̃0, ∂z̃p0, ∂z̃ρ0 are the modified background gravity, pressure and density gradients in the

absorption region respectively. A sponge-like decay term −σρ0v, where σ = σ(x, y, z) is

introduced in the momentum equation in order to stabilize the system. It is important

to note that in the absorbing layer, the solution is non-physical and therefore discarded.

Thus any modifications applied to the equations, in relation to issues such as altering the

stratification or not enforcing ∇ ·B = 0, is justifiable as long as the solution in the interior

domain is unaffected and the formulation is stable. The equations (14) through (17) in

conjunction with equation (12) provide the following prescription:

∂tρ = −∇h·(ρ0v) − ρ0

[

1

κ
∂zvz + Ψ

]

− vz∂z̃ρ0, (18)

∂tΨ = − d

κ2
∂zvz −

(

d

κ
+ α

)

Ψ, (19)

∂z̃ρ0 =
α/κ

d/κ+ α
∂zρ0, (20)

∂t (ρ0v) = ∇h ·
[

BB0

4π
+

B0B

4π
−

(

p+
B0 · B

4π

)

I

]
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+
1

κ
∂z

[

BzB0

4π
+
B0zB

4π
−

(

p+
B0 · B

4π

)

ez

]

+ξ − ρg̃0ez − σρ0v + S, (21)

∂tξ = − d

κ2
∂z

[

BzB0

4π
+
B0zB

4π
−

(

p+
B0 · B

4π

)

ez

]

−
(

d

κ
+ α

)

ξ, (22)

g̃0 =
α/κ

d/κ+ α
g0, (23)

∂tp = −c20ρ0∇h·v − c2ρ0

[

1

κ
∂zvz + Ψ

]

− v·∇hp0 − vz∂z̃p0, (24)

∂z̃p0 =
α/κ

d/κ+ α
∂zp0, (25)

∂tB = ∇h · (B0v − vB0)

+
1

κ
∂z (B0zv − vzB0) + η, (26)

∂tη = − d

κ2
∂z (B0zv − vzB0) −

(

d

κ
+ α

)

η. (27)

Note that ξ,η are vector memory variables required for the calculation of the convolutional

part of equation (10) and that η = (ηx, ηy, 0). These are additional variables are needed in

order to solve the auxiliary differential equations (19), (22), and (27).

Why is the stratification altered in the boundary region? Consider for example, the

derivative term ∂z̃p0. The differential equation (12) when applied to the steady ∂zp0 term

leads to:

∂z̃p0 =
1

κ
∂zp0 + χ (28)

∂tχ = − d

κ2
∂zp0 −

(

d

κ
+ α

)

χ. (29)

Since we are dealing with a steady background medium, we drop the time derivative in

equation (29) and obtain

∂z̃p0 =
α/κ

d/κ+ α
∂zp0. (30)

Note that we can pursue a similar formalism for the gradient term ∂z̃ρ0. To maintain

hydrostatic stability in the absorption layer, we alter gravity by prefixing it by the same

term, α/κ
d/κ+α . And hence the relations in equations (20), (23), and (25).

In the presence of magnetic field, three wave branches appear: magneto-sonic slow, fast,

and Alfvén (the distinctions between these modes apply only if the magnetic and hydrody-

namic pressures are not in equipartition). The physics of the propagation of these waves is

intricate and inherently highly anisotropic (e.g., Goedbloed & Poedts 2004). Alfvén waves

are transverse incompressible oscillations whereas the slow and fast modes are compressive

magnetically guided/influenced oscillations. The slow mode dispersion relation exhibits

certain pathologies wherein for certain wavenumbers, the phase speed vanishes while the

group speed becomes very small (e.g., see pp. 195-214 of Goedbloed & Poedts 2004). This

strong anisotropy destabilizes the calculation in the entry regions of the boundary layer.

Thus to offset the possibility of this instability, we add the sponge term −σρ0v to the

momentum equations in regions of the magnetic field.
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The choice of the parameters κ, d, α is fairly central to creating an efficient absorption

boundary formulation. Following Komatitsch & Martin (2007), we set α = πf0, where f0 is

a characteristic frequency of the waves. The α decays linearly to zero over the absorption

region, being maximum at the start of the layer and falling to zero at the boundary. The

damping function d = f(x, y, z0) (z/L)N , is zero at the boundary layer entry point and

attains its maximum value at the boundary. We find that for the Euler equations, the

following choice for f results in efficient absorption (e.g., Collino & Tsogka 2001):

f(x, y, z0) = −N + 1

2L
c̄ log10Rc, (31)

where L is the length of the layer, Rc is the amount of reflection tolerated, and c̄ is the

characteristic sound speed in the C-PML layer. Note that c̄ is not a function of z. For the

ideal MHD equations, we use:

f(x, y, z0) = −N + 1

2L
cw log10Rc, (32)

where, cw(x, y, z0) =
√

c0(x, y, z0)2 + cA(x, y, z0)2 is the characteristic propagation speed

of the fastest waves in the absorption layer (set for a specific vertical location z = z0) and

Rc, N, L retain the same meaning as for the Euler equations. Wave propagation speeds

can vary substantially from strongly magnetized regions to non-magnetic regions; for this

reason, we allow cw to vary horizontally, i.e., cw = cw(x, y, z0). The sound speed is denoted

by c and the Alfvén speed by cA = ||B||/√4πρ0. The κ term acts to damp evanescent

waves (Roden & Gedney 2000; Bérenger 2002); although there are evanescent waves in our

simulations, we find that instabilities are set into motion when κ is allowed to vary from

1 at the absorption layer entry to 8 at the boundary. For values of κ less than this, the

improvement in absorption efficiency is not very noticeable. We therefore set κ = 1. The

damping sponge is σ = −[(N + 1)cA/L](z/L)N log10Rc. The perfectly matched status of

the MHD formulation comes into question with the introduction of the sponge term. Note

that because σ ∝ cA the technique is perfectly matched for the stratified Euler equations,

i.e. for the cA = 0 case.

3. Numerical results

3.1. Methods

The simulation code employed in these calculations has been discussed in various previous

publications (Hanasoge 2007; Hanasoge et al. 2008; Hanasoge 2008). The validation and

verification of the numerical aspects of the code may also be found in these articles. In sum-

mary, to capture variations in the vertical direction, we apply sixth order, low dissipation

and dispersion compact finite differences (Lele 1992). A non-uniformly spaced grid is used

because the eigenfunctions change much more gradually deeper within the interior; the ver-

tical grid spacing varies from several hundred kilometers deeper within to tens of kilometers

in the near-surface layers. Because the dissipation of the scheme is low, spectral blocking

occurs along the vertical directions (energy buildup at the highest wavenumbers). This is

a direct consequence of the strong vertical stratification (terms like c, ρ0, p0 vary strongly

with z) and the non-uniform grid spacing; in order to avoid instabilities, we regularly de-

alias the variables along the z direction according to the technique described in Hanasoge
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& Duvall (2007). Zero Dirichlet upper and lower boundary conditions are enforced at the

outer edge of the C-PMLs for all the variables. A Fourier spectral method is applied in the

horizontal directions in order to compute derivatives. Time stepping is achieved through

the application of a second-order optimized Runge-Kutta scheme (Hu et al. 1996). The

horizontal boundaries are chosen to be periodic while the vertical boundaries are required

to be absorbent. We study this case in detail below; there is no loss of generality however,

since the method can be extended in order to render the horizontal boundaries absorbent

as well.

An inspection of equations (18) to (27) reveals that 6 memory variables are needed:

for vz, the three (vector) Lorentz force components, and two in the induction equation.

The memory and computational overheads are relatively small: (1) the boundary layer

works well with 8-10 grid points; thus the six memory variables need only be stored over

a small number of points, and (2) the additional computations are limited to a small

number of multiplications and additions, as required for the evolution of the convolution

equations (19), (22), and (27).

3.2. Waves in a non-magnetic stratified fluid

We first demonstrate the ability of the C-PMLs at absorbing outgoing waves. The back-

ground medium is a stratified polytrope with index m = 2.15; the vertical extent of the

computational domain is such that approximately 2.6 scale heights in density and 3.72

scale heights in pressure fill the domain (i.e. the pressure at the bottom is e3.72 = 41.5

times the value at the top). The stratification properties of the polytrope are described in

appendix A.1. Waves are locally excited in a small region located at a distance of 18 Mm

above the bottom boundary (the full vertical length is 68 Mm). For the C-PML param-

eters, we choose N = 2, Rc = 0.1%, f0 = 0.005 Hz in equations (29) and (31) for these

calculations. Both the upper and lower C-PMLs are 10 grid points thick. In Figure 1, we

show snapshots of the wavefronts at four instants of time. The scaling in all the plots is

identical. It is seen that the waves are almost completely absorbed by the upper boundary.

In order to study the absorption more quantitatively, we plot the following energy invariant

(summed over the entire grid) as a function of time in Figure 2, (e.g., Bogdan et al. 1996):

e =
1

2
ρ0||v||2 +

p2

2γp0
. (33)

In order to test the stability of the C-PMLs, we integrate the hydrodynamic wave

equations for around 300 wave periods (peak frequency ∼ 6 mHz; 12 hour time integration).

In this case, the setup is more realistic; the computational domain now straddles the solar

photosphere, a region where the density and pressure drop exponentially with height. The

waves propagate in a domain that contains 21 scale heights in density, representing a

contrast of 1.3 billion between the bottom and top. For details of the stratification, see

appendix A.2.

We solve these equations in a computational domain of size 200 × 200 × 35 Mm3,

(horizontal sides followed by vertical length) (1 Mm = 106m), discretized using 256×256×
300 grid points. Vertically, the box extends from approximately 34 Mm below the solar

photosphere to 1 Mm above. Standing waves or normal modes are naturally created by
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Fig. 1. Snapshots of the normalized wave velocity
√

ρ
0
vz at four time instants, non-dimensionalized

to span the range ±10. The grey scale in all the panels is identical. The velocities at t = 18 minutes

are barely discernible.

the stratification of the medium; the modes are trapped between the surface and a specific

depth below that depends on the frequency and wavenumber of the mode. A consequence

of this trapping is that the mode has an evanescent tail that extends from the surface

into the overlying atmosphere. We therefore place the upper computational boundary high

enough above the surface so that the normal mode evanescent tails are largely unaffected

by it.

An additional aspect is that of the wave excitation mechanism: in the Sun, waves are

created by the action of the strong near-photospheric turbulence (e.g., Stein & Nordlund

2000). To mimic this process, we add a horizontally homogeneous vertically localized de-

terministic forcing function (S of the momentum equations). This source term is only

vertically directed, i.e., S = S(x, y, t)δ(z− ze)ez, where ze = −50 km. In order to generate

S, we use a Gaussian random number generator to populate its Fourier domain and the

resultant function is multiplied by the average frequency power spectrum of the Sun, mod-

eled as a Gaussian with peak frequency at 3 mHz and a full width of 1 mHz. The inverse

transform of this function is S(x, y, t) (e.g., Hanasoge et al. 2006; Hanasoge 2008).

The calculation is stable over the entire time integration. The wavenumber-frequency

power spectrum of the vertical velocity component vz at a height of z = 200 km above the

photosphere is plotted in Figure 3. The horizontal axis represents the non-dimensional hor-

izontal wavenumber khR⊙, where R⊙ is the solar radius and kh is the horizontal wavenum-

ber, while the vertical axis is frequency in mHz.

In order to study the impact of these absorbing layers, we perform simulations with C-

PMLs placed adjacent to the upper and lower boundaries (Figure 3) and damping sponges

(Figure 4). A demonstration of the efficacy of the C-PML is the absence of artifacts related

to the lower boundary in the modal power spectrum in Figure 3. Weak reflections from the
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Fig. 2. Time evolution of the normalized modal energies as computed with equation (33). The

initial drop in energy is due to the arrival of waves at the lower C-PML from the source. The

energy of these downward propagating waves is plotted as the dot-dash line. The second drop in

the energy corresponds to the first arrivals at the upper C-PML (displayed with dashed lines).

Modes with large horizontal wave numbers and weakly reflected waves arrive gradually at the

boundaries at later times, resulting in an extended energy decay. Both upward and downward

propagating wave packets are efficiently absorbed by the CPMLs.

lower boundary cause the dispersion relation to change, manifested in the power spectrum

as a flattening of the curvature of the ridges, as seen in Figure 4.

3.3. Stratified MHD fluid

We first perform a test akin to that of Figure 2. A constant inclined magnetic field is

embedded in the polytrope of appendix A.1; the strength of the field is such that the

Alfvén speed is approximately four times the sound speed at the upper boundary. Waves

are excited in the vicinity of the upper boundary by horizontally shaking the field lines. The

fast and Alfvén waves reach the upper boundary first but the slow modes follow behind,

which makes the demonstration of the absorptive properties of the boundary formulation

less evident than in Figure 2. Furthermore, constructing energy invariants for MHD waves
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Fig. 3. Modal power spectrum of the vertical velocity component extracted at a height of z = 200

km above the photosphere, from a 12 hour long simulation with C-PMLs placed at the upper and

lower boundaries (plotted on a linear scale). The horizontal axis is the normalized wavenumber,

the vertical is frequency, and regions of high power are the normal modes that appear in the

calculation. The symbols overplotted on the power contours are the theoretically expected values

of the resonant frequencies, computed using the MATLAB boundary value problem solver bvp4c.

in stratified media is not a trivial affair due to the fairly complicated Lorentz force terms. A

number of authors have studied this problem (e.g., Bray & Loughhead 1974; Parker 1979;

Leroy 1985) and have arrived at differing versions of an invariant (personal communication,

P. S. Cally 2009); we use the following approximate form (kinetic + thermal + magnetic

energies; e.g., Bray & Loughhead 1974):

e =
1

2
ρ0||v||2 +

p2

2γp0
+

||B||2
8π

. (34)

We plot the time history of the energy summed over the entire computational domain in

Figure 5.

Our final test consists of studying the long-term stability of the method numerically.

A magnetic flux tube (e.g., Moradi et al. 2009) is embedded in the stratified polytrope

(appendix A.2); waves are excited in the non-magnetic regions and allowed to propagate

through the flux tube, whose geometry is shown in Figure 6. The system is stable up to

12 hours of time integration. The modal power spectrum from this data looks almost

identical to that in Figure 3 (with the exception of small frequency shifts) and is hence

not shown. The maintenance of ∇ · B = 0 numerically is an essential task of the scheme

(e.g., Tóth 2000). Discretization errors are one of the primary causes for non-zero ∇ ·
B = 0; additionally, in this case, the boundary formulation in non ∇ · B = 0 conserving.

Consequently, it is important to test if the error grows with time and to quantify its level.
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Fig. 4. Modal power spectrum extracted of the vertical velocity component extracted at a height

of z = 200 km above the photosphere, from a 12 hour long simulation with the boundaries lined by

sponges (plotted on a linear scale). The weak reflections from the lower boundary cause the disper-

sion relation to change in curvature at all points for which ν/(khR⊙) exceeds a certain threshold.

The symbols are the same as those in Figure 3; note that there are differences between the C-PML

and sponge layered simulations at high frequencies. This is because these high-frequency waves

are sensitive to the upper boundary.

In order to measure the normalized errors in maintaining ∇ · B = 0, we compute the

following quantity:

ne =
L2

[

∫ z2

z1

dz||∇ ·B||
]

L2 [||B||] , (35)

where z1, z2 are the limits of the physically-relevant domain (i.e., the non-absorbing regions)

and the following definition for the L2 norm is applied:

L2[f(x)] =

√

∑

i

f(xi)2, (36)

where the sum is over all the grid points xi in the computational domain. We display the

time evolution of ne on the left panel of Figure 7. One can see that ne is nearly constant,

perhaps showing a slight decrease with time. On the right panel we show the time history

of the numerator of ne (Eq. [35]). The gradual increase in the magnetic energy is due to

constant input wave excitation via the S term in the vertical momentum equation. The

growth rates of the magnetic energy demonstrate the numerical stability of the system over

the period of time integration.
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Fig. 5. Time evolution of the normalized MHD wave energy as computed using equations (34),

summed over the entire grid. Because of the strong dispersive nature of the waves and large

variations in the propagation speeds between the fast, slow, and Alfvén waves, some modes take a

long time to reach the boundaries, resulting in a relatively extended energy decay process compared

to Figure 2. The initial drop at t ∼ 20 − 40 min corresponds to the first arrivals of waves at the

upper and lower absorption layers. The secondary decline may be associated with the arrivals of

the downward propagating dispersing slow and Alfvén modes at the absorption layer adjacent to

the lower boundary.

4. Conclusions and Future Work

We have developed a Convolutional Perfectly Matched Layer (C-PML) for the stratified

linearized Euler equations and a highly efficient absorption layer for the ideal MHD equa-

tions. This boundary formulation is quite useful for the calculation of wave propagation

in astrophysical plasmas, where stratification and magnetic fields abound. The absorption

layer for MHD waves is a slightly altered version of the convolutional formulation of (e.g.,

Roden & Gedney 2000), requiring an extra sponge-like term in order to stabilize the sys-

tem. While the boundary methods as discussed here are perfectly matched for the stratified

Euler equations, the inclusion of the sponge term casts some doubt as to whether the same

could be said of the MHD equations. Simulations with the absorption layers for the strati-



14 Hanasoge et al.: Convolutional Perfectly Matched Layer

Fig. 6. The ‘sunspot’ like magnetic field configuration used in the long-term integration numerical

test. On the left panel we plot the ratio of the local Alfvén to the sound speed as a function

of x and z. The magnetic field becomes dynamically unimportant in the deeper layers because

the background hydrostatic pressure increases with relative rapidity. The right panel displays a

horizontal cut (at the solar photosphere) through the fast mode speed (
p

c2

A
+ c2

0
) .

Fig. 7. Plotted on the left panel is the error in maintaining ||∇ · B|| = 0 as measured by ne,

defined in equation (35). On the right panel is plotted the L2 norm of
R

z2

z1

dz ||∇ ·B|| (numerator

of Eq. [35]) as a function of time.

fied MHD and Euler equations were performed and found to be stable over a time length of

300 wave periods. With increasingly sophisticated boundary formulations, such as that of

Hu et al. (2008), who developed the PML for turbulent flows, we may in the near future be

able to extend these techniques to fully non-linear MHD turbulence/dynamo calculations.
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Appendix A: Stratification

A.1. Only polytrope

For the absorption tests in Sections 3.2 and 3.3, we use the following polytropic stratification

prescription:

p0(z) = ppoly

(

1 − z

zf

)m+1

,

ρ0(z) = ρpoly

(

1 − z

zf

)m+1

,

g0 =
m+ 1

zf

ppoly

ρpoly
, (A.1)

Γ1 = 1 +
1

m
,

c0(z) =

√

Γ1ppoly

ρpoly

(

1 − z

zf

)

.

(A.2)

We set ppoly = 1.178 × 105 dynes cm−2, ρpoly = 3.093 × 10−7 g cm−3, zf = −0.450 Mm,

and m = 2.150. Note also that z is the height, i. e. the atmospheric layers are described by

z > 0 and vice versa; z = 0 is the fiducial surface. The polytrope is truncated at z = −31.77

Mm (upper boundary) and z = −104.40 Mm (lower boundary) respectively.

A.2. Polytrope + isothermal layer

Waves propagating toward the surface in the Sun are reflected by a sharp fluctuation in

the background density gradient (e.g., Christensen–Dalsgaard 2003). This reflection zone

is located at a height of zr ∼ −0.050 Mm below the surface. We mimic this by patching the

polytropic stratification of section A.1 with an overlying isothermal layer. This patching

results in a fluctuation in the density gradient, leading to an acoustic cut-off frequency of

approximately 5.4 mHz, similar to the solar value. For z < zM , we use the prescription of

section A.1. For z ≥ zr, we use the following equations:

p0(z) = piso exp

[

zr − z

H

]

,

ρ0(z) = ρiso exp

[

zr − z

H

]

,

ρiso = ρpoly

(

1 − zr

zf

)m

, (A.3)

piso = ppoly

(

1 − zr

zf

)m+1

,

H =
piso

g0ρiso
.

The relations for ρiso and piso arise from the requirement of continuity of the pressure and

density at the matching point between the polytropic and isothermal layers. The relation

forH is a consequence of enforcing hydrostatic balance. This model is truncated at z = −34

Mm (lower boundary) and z = +1 Mm (upper boundary).
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