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Impact of locally suppressed wave sources on helioseismic traveltimes
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ABSTRACT

Wave traveltime shifts in the vicinity of sunspots are typically interpreted as arising predom-
inantly from magnetic fields, flows and local changes in sound speed. We show here that the
suppression of granulation related wave sources in a sunspot can also contribute significantly to
these shifts, and in some cases, an asymmetry between ingoing and outgoing wave traveltimes.
The tight connection between the physical interpretation of traveltimes and source-distribution
homogeneity is confirmed. Statistically significant traveltime shifts are recovered upon numer-
ically simulating wave propagation in the presence of a localized decrease in source strength.
We also demonstrate that these time shifts are relatively sensitive to the modal damping rates;
thus we are only able to place bounds on the magnitude of the effect of suppressed sources. We
see a systematic reduction of 10–15 s in p-mode mean traveltimes at short distances (∼6.2 Mm)
that could be misinterpreted as arising from a shallow (thickness of 1.5 Mm) increase
(∼4 per cent) in the sound speed. At larger travel distances (∼24 Mm), a 6–13 s differ-
ence between the ingoing and outgoing wave traveltimes is observed; this could mistakenly
be inferred as being caused by flows.
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1 IN T RO D U C T I O N

The discovery that sunspots support oscillations (e.g. see the review
by Bogdan & Judge 2006) was important, it introduced the possibil-
ity of using measurements of phase shifts in the propagating waves
to probe the underlying structure and dynamics of these enigmatic
objects. Some of our current observational understanding of the
sunspot interior comes from the inverse theory applied in conjunc-
tion with time-distance helioseismology (Duvall et al. 1993; Gizon
& Birch 2005) on waves in these regions. Subsequent to the studies
of flows in and around sunspots by Duvall et al. (1996), inversions
utilizing the ray (Kosovichev & Duvall 1997), Rytov (Jensen &
Pijpers 2003), and Born (Birch, Kosovichev & Duvall 2004) ap-
proximations were performed to recover the interior structure of
sunspots (Kosovichev, Duvall & Scherrer 2000; Jensen et al. 2003;
Couvidat, Birch & Kosovichev 2006).

Apart from direct mechanical effects on the waves, magnetic
fields are also responsible for impeding the action of near-surface
convection, commonly believed to be the source of waves (e.g. Stein
& Nordlund 2000). Despite the work of Woodard (1997) and
Gizon & Birch (2002), causal factors of traveltime shifts such as
wave damping and source distribution inhomogeneity in the context
of sunspots have not been studied in detail. Gizon & Birch (2002)
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first derived the linear sensitivity of f-mode traveltimes to local
changes in source strength, later corroborated through time-distance
analyses of artificial data by Hanasoge, Duvall & Couvidat (2007).
The concept of variations in source-strength engendering traveltime
shifts can be somewhat mystifying. Surely, waves do not speed up
or slow down when a source emits a wave of half the amplitude, as
the naive interpretation seems to indicate? The answer lies in the
manner in which traveltimes are computed; stripped of physical in-
terpretation, traveltimes are obtained by fitting cross-correlations of
velocity (or intensity) signals at pairs of points or a point and an an-
nulus. The measurement points do not constitute a source-receiver
pair as in the typical geophysical situation; rather, all waves that
contain coherent phase information at these points contribute to the
cross-correlations. The wave traveltimes measured in a system with
a spatially uniform distribution of sources and a specific set of damp-
ing rates have certain expectation values. However, it is conceivable
that over a region where the directionality or spatial distribution of
waves is biased, the contributions by wave packets (to the cross-
correlations) from disparate directions and points are not in the same
proportion as in the spatially uniform case. Consequently, there is
a shift in the expectation value of the traveltime in this region. In
fact, the term ‘traveltime’ is better interpreted as a quantity that
describes the statistics of the wave field than the physical wave
traveltime between the measurement points. Damping also plays an
important role, it determines the extent of coherence of the waves
and the degree of contribution to the cross-correlations. These can
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be serious issues in sunspots because of the possible lack of sources
and the putative excesses in damping and absorption (e.g. Braun,
Duvall & Labonte 1987). Wave attenuation associated with mode
conversion is likely large, affecting wave phases in a non-linear
manner. This may in turn impact the strength of the effect reported
here. Numerical studies of these wave interactions using magneto-
hydrodynamic (MHD) solvers (e.g. Cameron, Gizon & Daiffallah
2007; Hanasoge 2007a; Moradi, Hanasoge & Cally 2008) indicate
that the magnitude of the magnetic and hydrodynamic parts of the
perturbations in sunspots is so large that the time shifts are probably
not dominated by effects such as source suppression.

Mean traveltimes are defined as the average of the ingoing and
outgoing wave traveltimes, while difference traveltimes are obtained
by subtracting the two. We posit that the classical interpretation of
mean traveltime shifts as mostly arising from changes in the sound
speed and difference traveltime shifts predominantly from flows in
sunspots is incomplete because the lack of wave sources can also
cause significant mean and difference traveltime shifts; this effect
is demonstrated here via numerical simulations and semi-analytical
methods. In Section 2, we describe the numerical machinery em-
ployed to perform the simulations and discuss the impact of hor-
izontal boundary conditions on the resultant time shifts. In order
to characterize the influence of damping rates, we apply the semi-
analytical techniques of Gizon & Birch (2002). We analyse the
simulated data with methods of time-distance helioseismology in
Section 3; comparisons are drawn between the results of simula-
tions and the semi-analytical models. Finally, we summarize and
conclude in Section 4.

2 N U M E R I C A L P RO C E D U R E

AND TEST CASES

Using techniques developed in Hanasoge et al. (2006), Hanasoge
et al. (2007) and Hanasoge (2007b), wave propagation in the
near-surface layers of the Sun is simulated in a box of di-
mension 400 × 400 × 35 Mm3, where the third dimension is
depth. The background stratification is a convectively stabilized
form of model S (Christensen-Dalsgaard 1996), described in
Appendix A. Waves are stochastically excited by introducing a
forcing term in the vertical momentum equation; the forcing func-
tion is prescribed such that a solar-like power spectral distribution
is obtained. The solution is temporally evolved using a second-
order optimized Runge–Kutta integrator (Hu, Hussaini & Manthey
1996). The vertical derivative is resolved using sixth-order com-
pact finite differences with fifth-order accurate boundary conditions
(Hurlburt & Rucklidge 2000). Depending on the choice of boundary
conditions, the derivatives in the horizontal directions are computed
either using these compact finite differences (absorbing conditions)
or the Fast Fourier Transform (periodic boundaries). The validation
and verification of the code are discussed in Appendix B.

The power spectrum and snapshots of the oscillation velocities
derived from a 12 h long ‘quiet’ simulation are displayed in Figs 1
and 2, respectively. To simulate source suppression, the forcing term
is multiplied by a spatial function that mutes source activity in a
circular region of 10 Mm radius (i.e. the forcing function assumes a
reduced value in this region). Based on estimates of emitted energy
flux in sunspot umbrae, which range from 10–20 per cent of the
average value in the quiet Sun (e.g. Schüssler & Vögler 2006), we
perform two simulations, one with source strength in the disc region
set to zero and another with 20 per cent of the ‘quiet’ value. The
two simulations possess very similar traveltime maps; therefore,

Figure 1. Power spectrum obtained from a 12 h ‘quiet’ simulation. Some
ridges have been labelled. The symbols mark independent estimates (ob-
tained using MATLAB) of the eigenfrequencies of the altered solar model. The
agreement between computation and theory appears reasonable.

Figure 2. Snapshots of the normalized vertical component of the oscillation
velocity (

√
ρ0c vz) – vertical and horizontal (at z = 200 km) cuts from a

‘quiet’ simulation (absorbing boundary case) are displayed. The units are
arbitrary and same for both panels. Energy conservation requires an increase
in velocities to offset the sharply decreasing density in the near-surface layers
– and hence the choice of this normalization (ρ0 is the density and c the
sound speed).

we only show results from the simulation where the sources were
completely suppressed.

The power-spectral distribution of oscillation modes and the
steady-state wave flux emerge from an interplay between source
activity, wave damping and mode mass. The non-scattering
nature of source-strength perturbations complicates matters because
the phase measurements are sensitive to the degree of inhomogene-
ity, which in turn is dependent on the intensity of the ambient wave
flux. One can imagine that in the limit of an arbitrarily large wave
flux, the time-shift effects of the suppressed source may altogether
vanish (or reach some asymptotically small value). It is therefore
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important to investigate this matter in some detail. The wave flux
in the computations is set by the choice of boundary conditions and
damping rates. All other parameters are identical, absorbing hor-
izontal sides evidently engender a weaker ambient flux than their
periodic counterparts; thus, we may study the impact of boundary
conditions on the time shifts through numerical experiments with
these choices of horizontal boundaries. In an indirect manner, these
boundary conditions mimic higher and lower damping rates. In the
case of the former, the lack of incoming waves from regions external
to the boundaries sets the damping length (or maximum propaga-
tion distance) to approximately half the size of the computational
region, since the perturbation is always at the centre. This results
in a dearth of p modes that travel large distances or those that
possess long lifetimes. Contrarily, in the case of periodic bound-
aries, waves exit from one boundary only to re-enter the domain
from another; if the modal damping rates are unrealistically small,
these perpetually propagating acoustic waves will rapidly fill up the
domain, thereby significantly diluting the effects arising from the
suppressed sources. Roughly we may conclude that the low wave
damping limit is given by the periodic case and high damping limit
by the absorbing case.

Unfortunately, due to poor observational constraints on damp-
ing rates, it is unclear as to which of these situations is preferable.
The linewidths recovered from Michelson Doppler Imager (MDI;
Scherrer et al. 1995) observations by Korzennik, Rabello-Soares
& Schou (2004) and Duvall, Kosovichev & Murawski (1998) dif-
fer by almost a factor of 2. Moreover, the complicated functional
dependence of damping on frequency (e.g. Korzennik et al. 2004)
makes it all but impossible to implement it in the computation.
Thus, we can only hope to place bounds on the extent of the effect
of suppressed sources since precise estimates are closely tied to the
non-trivial feat of accurately matching the simulated wave power
spectral distribution with the observational one. The outcomes of
these tests are discussed in Section 3.

2.1 Theoretical model

In order to gain an appreciation for the effects of damping on the
conclusions of this paper, we create semi-analytical forward models
in the manner of Gizon & Birch (2002). These forward models
predict the time shift associated with a specific perturbation. The
starting point is the temporal Fourier transform of equation (22)
from Gizon & Birch (2002), which gives the expected value of the
cross-covariance, C, in terms of Green’s functions G and the source
covariance M,

C(r1, r2, ω) = (2π)2

∫∫
ds Gi∗(r1, s, ω)Gj (r2, s, ω)Mij (s, ω) .

(1)

The integration variable s runs over the horizontal position of all the
wave sources, r1 and r2 are the positions of the two observation po-
sitions, and ω is the temporal frequency. Notice that in writing this
equation, we have assumed that the wave sources are uncorrelated
in space. In order to compute equation (1), we use the normal-mode
summation of Green’s functions from Birch et al. (2004), which
include two models of wave damping, one based on the linewidths
measured by Korzennik et al. (2004) and the other with twice these
rates (approximately those measured by Duvall et al. 1998). We use
the source covariance from Birch et al. (2004), though modified
to include the reduction of source strength inside the disc of radius
10 Mm. It is important to note that the type of source used in this par-
ticular forward model is quadrupolar in nature, whereas we employ

dipoles in the simulation. With these ingredients, the expected value
of the point-to-point cross-correlation (equation 1) can then be com-
puted numerically and averaged to obtain centre-to-annulus cross-
correlations. In Section 3, we will further discuss the connection
between the horizontal boundary conditions implemented in the
simulations and the damping rates incorporated in this theory.

3 TR AV E LT I M E S A N D P OW E R C O R R E C T I O N

The p-mode traveltimes are measured using the procedure described
in Couvidat et al. (2006). In order to estimate the traveltimes ac-
curately, broad phase-speed filters were implemented to avoid con-
taminating the first bounce ridge with the filter artefact (see table 1
of Hanasoge et al. 2007; the full width at half-maximum (FWHM)
was multiplied by 4). The p-mode cross-correlation branches corre-
sponding to positive and negative times (outgoing/ingoing waves)
averaged over the source-perturbation area in comparison to the
average cross-correlation for the quiet simulation with absorbing
horizontal sides are shown in Fig. 3 for � = 24.35 Mm, where
� = |r1 − r2| is the distance between measurement points. There
is a notable asymmetry between the outgoing and ingoing waves,
especially at larger distances where the outgoing waves contain al-
most all of the traveltime shifts. Choosing the centre of the source
suppression to be the zero point, ingoing and outgoing traveltime
shifts are azimuthally averaged and plotted in Fig. 4. The reduction
in the p-mode mean traveltimes seen in panel (a) of Fig. 4 is com-
parable, magnitude wise, to the 15 s increase (azimuthal average)
seen for � = 6.2 Mm in some sunspots (NOAA 8243, from high-
resolution MDI observations, Couvidat et al. 2006). The asymmetry
between ingoing and outgoing waves for the travel distance of � =
24.35 Mm results in significant shifts in the difference times, of the
order of 12 s [panel (b), Fig. 4].

In contrast, the simulations with periodic boundary conditions
show reduced shifts (also see Parchevsky, Zhao & Kosovichev 2008)
of the order of 10 s in the mean times for � = 6.2 Mm and 6 s in the
difference times for � = 24.35 Mm. Evidently, the reappearance
of waves from the opposite boundary upon their exit from one has

Figure 3. Average cross-correlation, C(�, t) for ingoing (on the left-hand
side) and outgoing (on the right-hand side) waves obtained from a centre-
to-annulus scheme (Duvall et al. 1996) for � = 24.35 Mm from simulations
with absorbing horizontal sides. The solid line shows the average cross-
correlation for a simulation with a spatially homogeneous source distribution
(‘quiet’) and the dashed line for the source-suppressed region. The averaging
is performed over a region within the 10 Mm disc in the quiet and perturbed
simulations. The slight difference in amplitudes (there are no phase dif-
ferences) between the ingoing and outgoing wave cross-correlations in the
quiet simulation is due to the absence of incoming waves from outside
the boundaries. For the source-suppressed case, the outgoing wave cross-
correlation shows a phase advance (roughly 6 s) while the corresponding
ingoing wave correlation shows a much smaller phase shift. This may con-
tribute to the asymmetry between ingoing and outgoing waves observed in
sunspots (e.g. Lindsey & Braun 2005).
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Figure 4. Azimuthally averaged outgoing (solid line) and ingoing (dashed
line) time shifts, δτ , of waves that travel distances � = 6.2 Mm (left-hand
column) and � = 24.35 Mm (right-hand column). The zero point is the
centre of the source-suppression region. The first row [panels (a) and (b)]
shows time shifts from the simulation with absorbing boundaries while the
theory of Section 2.1 with high-damping rates predicts those of the second
row [panels (c) and (d)]. The third row [panels (e) and (f)] is from the
simulation with periodic boundaries while the bottom row [panels (g) and
(h)] is from the theory with the Korzennik et al. (2004) damping rates
(roughly half the linewidths of Duvall et al. 1998). A close correspondence
is seen between the upper and lower pairs of rows.

led to the prevalence of a larger wave flux in the computational
domain. As pointed out in Section 2, the wave flux plays a crucial
role in bounding the effect of non-scattering source perturbations.
The situation is rendered interesting by the close correspondence
between the theory of Section 2.1 and the simulations, as seen be-
tween the upper and lower pairs of rows in Fig. 4. Higher damping
rates lead to larger time shifts and vice versa, somewhat analogous
to simulations with the absorbing and periodic boundaries, respec-
tively. The conflicting linewidth estimates of Korzennik et al. (2004)
and Duvall et al. (1998) make it difficult to conclusively pick one
simulation over the other. In fact, it is probably fair to say that real-
istic magnitudes of the time shifts may lie somewhere between the
estimates derived from the absorbing and periodic cases.

If the simulations are believed to be representative of reality, and
the traveltimes of ingoing and outgoing waves are appropriately
‘corrected’ to account for the possibility of missing wave sources
in sunspots, we might expect a significant change in the mean
traveltimes for � = 6.2 Mm. Moreover, the asymmetry between
the ingoing and outgoing waves seen for � = 24.35 Mm (ingoing
∼ −10 s, outgoing ∼ −40 s, azimuthal averages for sunspot NOAA

Figure 5. Noise-subtracted (Hanasoge et al. 2007) outgoing [panel (a)] and
ingoing [panel (b)] time shifts for � = 24.35 Mm. We performed three
simulations; (i) Sound-speed perturbation (of amplitude 7.5 per cent in
δc2/c2 and size, 20 Mm) + source suppression, (ii) only the sound-speed
perturbation and (iii) only sources suppressed. The perturbations in (ii)
and (iii) were identical to the individual components of (i). The noise-
subtracted traveltimes associated with (i) (solid line) are seen to be almost
indistinguishable from (ii) + (iii) (dashed line), indicating that these wave
field perturbations are entirely decoupled.

8243) could be reduced somewhat by applying these corrections.
We show in Fig. 5 that traveltime shifts associated with source sup-
pression and sound-speed perturbations are linearly additive. Thus,
these source suppression effects can be addressed in a linear man-
ner, making it possible to remove their signature from helioseismic
analyses.

The decrease of acoustic power in a sunspot has been widely
observed and explanations offered (e.g. Lites, White & Packman
1982); recently, Parchevsky & Kosovichev (2007) have suggested
that the suppression of convection (and hence wave sources) is suf-
ficient to explain more than half of the decrease in acoustic power in
sunspots. However, in our calculations, even when the source
strengths in the region of suppression are reduced to zero, we see
only about 20 per cent reduction in acoustic power. In any case, it
is difficult to compare these two results because of the differences
in damping rates, the time length of the calculations, the sizes of
the computational domains, etc. To compensate for traveltime mea-
surement ‘errors’ related to the local reduction in acoustic power,
Rajaguru et al. (2006) proposed a power correction method which
we incorporated before computing traveltimes. Since we use broad
phase-speed filters and because the acoustic power is reduced by
only 20 per cent, the power correction does little in the way of alter-
ing time shifts (∼10 per cent change at the most) in our simulations.

Inversions of the mean time shifts (absorbing boundary case)
using sound-speed kernels in the ray approximation and the multi-
channel deconvolution algorithm (Jensen, Jacobsen & Christensen-
Dalsgaard 1998) are shown in Fig. 6. The perturbation appears as a
shallow (≈1.5 Mm, abutting the photosphere), 7.5 per cent increase
in δc2/c2, where c is the sound speed. The horizontal size of the
anomaly is comparable to that of the region of suppressed sources,
that is about 20 Mm.

4 D ISCUSSION

We demonstrate that obtaining meaningful traveltimes is strongly
incumbent upon the homogeneity of sources in the medium. Numer-
ical and analytical experiments where sources were suppressed over
a region typically the horizontal size of a sunspot predict significant
wave phase shifts. Therefore, our analysis seems to indicate that he-
lioseismic investigations into the internal constitution of a sunspot
are incomplete without taking into account the effects of inhomoge-
neously distributed sources and damping (Woodard 1997). We see
that ingoing and outgoing waves are differentially affected, with the
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Figure 6. Inversion of the noise-subtracted (Hanasoge et al. 2007) mean
time shifts arising from the suppressed sources. Shown are piece-wise con-
stant slabs, averaged over the depth range [−0.62, 0] Mm (left-hand panel)
and [−1.42, −0.62] Mm (right-hand panel), where 0 indicates the surface.
Because the inversion is noisy, the appearance of random features is ob-
served. Traveltime signatures of suppressed sources and local increases in
the sound speed look unexpectedly identical, showing significant cross-talk
from one effect on to the other.

asymmetry exacerbated at increasing travel distance, �, especially
when damping rates are high. The large negative mean traveltime
shifts seen at the shortest travel distances (∼ −10 to −15 s, � =
6.2 Mm) are worrisome for it is not clear how accurate estimates
are of the amplitude of the near-surface sound-speed perturbation
below a sunspot. Similarly, the systematic difference traveltimes ob-
served for waves (also ∼ −6 to −15 s, � = 24.35 Mm) that travel
larger distances indicate that the flow inversions may be inaccurate.
However, the recent results of Moradi et al. (2008) seem to imply
that factors like source suppression may not be very significant in
the deluge of anomalies that a sunspot introduces. The non-linear
action of such large changes in the background stratification and
physics on the traveltimes remain to be more carefully investigated.
The power correction of Rajaguru et al. (2006) in this case de-
creases the magnitude of the traveltime shifts at most by about
10 per cent. The sensitivities of other methods of helioseismol-
ogy like ring diagram analysis (Hill 1988) and acoustic holography
(Lindsey & Braun 1997) to the homogeneity of the wave field re-
main to be investigated.
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APPENDI X A : A LTERED SOLAR MODEL

Here, we describe the artificially convectively stabilized model
(Appendix A of Hanasoge et al. 2006) used in our computations.
The dimensionless radial coordinate is denoted by r, where r ex-
presses fractions of the solar radius R� = 6.959894677 × 1010 cm.
For r < 0.98, background properties as prescribed by model S
(Christensen-Dalsgaard 1996) are used. In the range 0.9998 ≥ r ≥
0.98, the empirical formulae

ρ0 = 4.1522194[0.998989 − r

+ 4.36138(r − 0.98)2.1]2.009828, (A1)

p0 = 2.7392767 × 1015[0.998989 − r

+ 4.36138(r − 0.98)2.1]3.009828, (A2)

g = − 1

ρ0R�
dp0

dr
, (A3)

�1 = max
(
�S

1 , 1.507550
)
, (A4)

are implemented, whereas in the region 1.002 ≥ r ≥ 0.9998, an
isothermal layer is utilized,

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 391, 1931–1939



1936 S. M. Hanasoge et al.

ρ0 = 4.5260638 × 10−7 exp[7690.7995(0.9998 − r)], (A5)

p0 = 1.0252267 × 105 exp[7690.7995(0.9998 − r)], (A6)

g = 24998.23. (A7)

Density (ρ0) is expressed in units of g cm−3, pressure (p0) in
dynes cm−2, gravity (g) in cm s−2, the first adiabatic index (�1)
is dimensionless, and the sound speed (c) in units of cm s−1 is given
by

c =
√

�1p0

ρ0
. (A8)

The eigenfrequencies of the altered model have been computed
independently using a boundary value solver provided in MATLAB

and compared with those recovered from the computations (Fig. 1).
The agreement is good.

APPENDIX B: C ODE V ERIFICATION

The accuracy of the numerical scheme described in Section 2 is
confirmed using a number of tests (Hanasoge 2007b). Before delv-
ing into the verification details, it is important to understand the
parameter regimes of the waves and the limiting factors controlling
the simulation time-step. The highest frequency of waves of inter-
est to us is of the order of 6 mHz, corresponding to a time-scale of
about 167 s. The simulation time-step of 2 s is significantly smaller
than the period of the oscillations. The calculations are evidently
temporally highly over resolved; compared to the 4–10 points per
wavelength (ppw) quoted by Hu et al. (1996) and Berland, Bogey &
Bailly (2006), the simulations operate at between 80 and 250 ppw.
In the radial direction, the eigenfunctions of the modes contain a
rather small number of nodes (10–30 depending on the mode) in
comparison to the actual number of grid points (300 points). The
reason for the excessive spatial resolution is the need to capture the
rapid density (pressure) variation with radius. Therefore, the limit-
ing factor controlling the time-step is the large number of density
(pressure) scale heights in the computational domain, which is why
the radial and temporal resolutions are so high.

We show in Fig. B1 that the boundary conditions cause the error-
convergence rate of the compact finite differences to drop to fifth
order. Although not presented here, the convergence rate is entirely
unchanged when the radial de-aliasing filter, described in Hanasoge
& Duvall (2007), is applied in conjunction with the finite differ-
ences. Next, to demonstrate the accuracy of the spatial scheme in

Figure B1. Spatial convergence rate of the compact finite differences with
fifth-order accurate boundary conditions. The solid line shows the accuracy
of the scheme, while the dashed line is the theoretical fifth-order accuracy
curve.

its entirety (i.e. when used with radial de-aliasing and the temporal
scheme), we simulate the 1D propagation of a Gaussian wavelet
in a box with reflecting boundary conditions. The grid-spacing in
the calculation follows the constant traveltime criterion developed
in Hanasoge et al. (2006). The background model is chosen to be
an adiabatically stratified, truncated polytrope with index m = 1.5,
gravity g = −2.775 × 104 cm s−2 ez, reference pressure pref =
1.21 × 105 dynes cm−2 and reference density ρref = 2.78 ×
10−7 g cm−3, such that the pressure and density variations are given
by

p0(z) = pref

(
− z

z0

)m+1

, (B1)

and

ρ0(z) = ρref

(
− z

z0

)m

. (B2)

The photospheric level of the background model is at z = 0, with the
upper boundary of the truncated polytrope placed at a depth of z0 =
768 km. This model is similar to the stratification in the outer layers
of the Sun (e.g. Bogdan & Cally 1995). Because error-convergence
rates are very sensitive and easily masked by slight differences such
as the locations of the comparison points of solutions, we start with
a highly resolved 721 point grid and downsample by successively
higher rates (every second point, every third point and so on). The
solutions obtained on this sequence of grids are compared with
the highly resolved case to obtain the error-convergence rate. The
lower boundary of the simulation is placed at z = −20.876 Mm,
with wall-like boundary conditions on both ends (v = 0, ∂zp = −ρg,
at the boundaries). The time-step of the simulation was chosen to
be �t = 0.05 s. The experiment is graphically displayed in Fig. B2,
and the error-convergence rate is shown in Fig. B3.

B1 Eigenfunctions

For the polytrope described above, it is possible to determine the
eigenfunctions analytically (e.g. Bogdan & Cally 1995). This will
assist us in verifying that the spatial scheme is able to recover the
eigenfunctions accurately. The first step is to set down the equations
to be solved:

∂t ρ(z, t) = −∂z(ρ0v), (B3)

ρ0∂t v(z, t) = −∂zp − ρg, (B4)

∂tp(z, t) = −c2
0ρ0∂zv + ρ0vg, (B5)

where ρ refers to density, c refers to sound speed, the 0 subscript
refers to background properties of the model and t time. Differen-
tiating equation (B4) with respect to time and substituting for time
derivatives of density and pressure from equations (B3) and (B5),
respectively, we obtain the following:

ρ0∂
2
t v(z, t) = −∂z(−c2

0ρ0∂zv + ρ0vg) + ∂z(ρ0gv). (B6)

Next, we define the Eulerian pressure and velocity fluctuations to
be, respectively,

p(z, t) = p∗(z)e−iωt (B7)

v(z, t) = v∗(z)e−iωt . (B8)

Substituting these expressions into equation (B6), we have:

−ω2ρ0z
2
0v

∗ = ∂s(c
2
0ρ0∂sv

∗), (B9)
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Figure B2. Experiment to determine the spatial error-convergence rate.
The initial condition, a Gaussian wavelet in velocity, is shown in panel
(a). In panel (b), the temporally evolved wavelet at time t = 2 min is dis-
played. Simulations are performed with varying numbers of grid points,
n = 721, 361, 181, 145, and 121, so that each grid is a downsampled version
(i.e., every other point, every third point etc.) of the n = 721 case. Errors are
computed at t = 2 min, using a downsampled version of the n = 721, t = 2
min solution as a template [panel (b)]. In panels (c) and (d), the differences
between the n = 121 solution and the downsampled n = 721 template at
t = 12 min are displayed. The wavelet has propagated all the way out to the
upper boundary at this point; it is seen that the difference, interpreted as the
error, is greater in the unfiltered case in panel (d) than in the filtered version
in panel (c), where the filter is applied to de-alias variables in the radial direc-
tion (Hanasoge & Duvall 2007). The difference between (c) and (d), which
although appears harmless, continues to grow, eventually overwhelming the
simulation unless a de-aliasing filter is applied frequently.

where once again, s = −z/z0, ρ0 = ρcs
m, p0 = pcs

m+1, c2
0 =

c̃2 s, and ρc, pc, c̃2 are the density, pressure and sound speed square
at s = 1. The upper and lower boundaries of the polytrope are at
spatial locations s = 1, D, with D a free parameter. Equation (B9)
is simplified to obtain

s∂2
s v

∗ + (m + 1)∂sv
∗ + α2

4
v∗ = 0, (B10)

where α = 2ωz0/c̃. Equation (B10) is solved to obtain the analytical
expression for the eigenfunction:

v∗ = As−m/2Jm(αs1/2) + Bs−m/2Ym(αs1/2). (B11)

The constants A and B are determined by enforcing the boundary
conditions v∗ (s = 1) = 0 and v∗ (s = D) = 0. From these conditions
emerge a sequence of resonant frequencies, α, which can then be
used to obtain the eigenfunctions of the resonant modes. The eigen-
function for pressure is related to the one for velocity according
to

p∗ = 2iρcc̃

α
sm[mv∗ + s∂sv

∗]. (B12)

To obtain eigenfunctions from the computations, we excite waves
and simulate wave propagation in the above-described cavity. Tem-
poral transforms of the entire data set are computed at each spa-
tial location; resonant modes are then isolated by analysing large
amplitude regions in the power spectrum. These frequencies are

Figure B3. Spatial error-convergence rate (with radial de-aliasing) based
on the experiment of Fig. B2; the time step was �t = 0.05 s. The solid line is
the error of the compact finite differences and the dashed line is a theoretical
sixth-order accuracy curve. It is somewhat surprising that the scheme obeys
a sixth-order accuracy law despite the use of fifth-order boundary conditions.
Partly, the reason could be that the problem is a consistent initial-boundary
value problem, that is v = 0 and ∂zp = −ρg at the boundaries.

compared to the analytically predicted values to ensure that these
are indeed resonant modes. Having done so, the temporal spec-
trum is multiplied by a frequency-window function to retain power
only in the region of interest and then inverse Fourier transformed.
The resultant transforms are the desired eigenfunctions. However,
spatial error-convergence rates are difficult to measure from this
experiment because the eigenfunction signal is diluted by neigh-
bouring modes due to the finite temporal window of the simula-
tions. Moreover, the accuracy with which the resonant frequency
can be measured is bounded by the time length of the calculation.
For the eigenfunction shown in Fig. B4, a resonant mode with ν =
6.6111 mHz was isolated using an extremely narrow, four-point
box-car frequency filter. Simulations with varying grid spacings all
showed a peak in the power spectrum at frequency of 9 μHz away
from the analytical prediction (frequency resolution ∼22μ Hz, from
a 12-h simulation).

B2 Efficacy of the transmitting boundary

As described in Hanasoge et al. (2006), we use the transmitting
boundary conditions of Thompson (1990) with an adjoining sponge
(e.g. Lui 2003) to ‘prepare’ the waves for the boundary. The main
reason for using this prescription as opposed to other possibilities
(Poinsot & Lele 1992; see Colonius 2004 for a review) is the ease
of implementation and efficiency of the method. In the simulations,
we use the following:

∂p

∂z
|z=bot = −cρ0

∂vz

∂z
− ρg, (B13)

∂p

∂z
|z=top = +cρ0

∂vz

∂z
− ρg, (B14)
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Figure B4. Comparison of eigenfunctions for a resonant mode of frequency
ν = 6.6111 mHz, obtained analytically (solid line) and through simulation
(dotted–dashed line) with n = 121. At higher resolutions, the two curves are
virtually indistinguishable and hence are not shown here. Eigenfunctions
for other resonant frequencies have also been compared and found to be in
good agreement. Including the two boundaries, the eigenfunction contains
only 11 nodes, far smaller than the number of grid points. With fewer
(�80) points, the system develops instabilities because of the steep density
gradient.

∂p

∂x
|x=left = −cρ0

∂vx

∂x
, (B15)

∂p

∂x
|x=right = +cρ0

∂vx

∂x
, (B16)

with the velocity derivatives computed in a Dirichlet sense, using
the values at the end points.

To test, if these boundary conditions change the eigenfunction in
any significant manner and to ensure that to a large extent, they are
indeed non-reflecting, we perform 1D calculations of wave propa-
gation in a background similar to that of Section B1. To give this
problem a realistic spin, we stitch an isothermal atmosphere to the
polytrope so that a finite acoustic cut-off frequency is achieved,
thereby providing a natural reflection region for the waves. More-
over, we relax the zero-velocity condition on the upper bound-
ary and implement a combination of the sponge and transmitting
boundary conditions (equations B13–B16) while still enforcing a
zero-velocity condition on the lower boundary. Waves whose fre-
quencies are lower than the acoustic cut-off are reflected back into
the interior while an evanescent non-propagating region develops in
the isothermal atmosphere. Thus, we can determine the effect of the
boundary conditions on the simulated eigenfunctions by comparing
them with their analytical counterparts.

B3 Evanescent behaviour

Consider an isothermal layer with constant sound speed c0 with ex-
ponentially decaying background density (ρe) and pressure (pe) pro-
files smoothly connected to the truncated polytrope of Section B1.
We have:

ρe = ρrefe
−(z0+z)/H , (B17)

pe = prefe
−(z0+z)/H , (B18)

Te = Tref, (B19)

with z = 0 corresponding to the ‘photosphere’ of this model, and H
to the scale height in the atmosphere. The governing equation (B9)
is unaltered except for the background density and sound speed.
Again, we define v(z, t), p(z, t) as:

p(z, t) = p∗
e (z)e−iωt , (B20)

v(z, t) = v∗
e (z)e−iωt . (B21)

When the constituent equation (B9) is solved, we obtain the follow-
ing for p∗

e and v∗
e :

p∗
e = Ceλz−z/H , (B22)

v∗
e = Deλz, (B23)

with constants C, D and λ a solution of

λ2 − λ

H
+ ω2

c2
0

= 0, (B24)

λ = 1

2H

[
1 −

√
1 − ω2

ω2
a

]
, (B25)

ωa = c0

2H
. (B26)

We retrieve two solutions for λ and reject the one whose energy
density ∝ ρv2 grows without bound as a function z. In this situation,
the relation between p∗

e and v∗
e is given by

v∗
e = iω

ρcη
p∗

e , (B27)

η = c2
0λ − g. (B28)

For boundary conditions, we use normal velocity and Eulerian
pressure matching across the boundary s = 1:

v∗ = v∗
e , (B29)

p∗ = p∗
e , (B30)

where v∗ and p∗ are the velocity and pressure in the polytropic layer,
given by equations (B11) and (B12), respectively. When writing the
velocities in the following form, we will have only the pressure
equation to solve

v∗ = A
iω

ρcη
e−λz0s−m/2

[
Jm(αs1/2) + βYm(αs1/2)

]
, (B31)

v∗
e = A

iω

ρcη
e−λsz0 [Jm(α) + βYm(α)], (B32)

where β is the unknown constant, we must determine (A can be
arbitrarily chosen). Equations (B27) and (B32) constrain p∗

e :

p∗
e = Ae−λsz0+sz0/H [Jm(α) + βYm(α)]. (B33)

Matching p∗
e = p∗ at s = 1 gives us the following relations:

β = −
[

Jm(α) + κJm−1(α)

Ym(α) + κYm−1(α)

]
, (B34)

κ = ωc0

αη
e−z0/H . (B35)

To determine the resonant modes α of this model, we use the defi-
nition of β from equation (B34) and set equation (B31) to zero at
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Figure B5. Simulated (solid line) and analytical (dot–dash line) eigenfunc-
tions for ν = 1.68 mHz, for the model described above. It is seen that the
boundary conditions and sponge do not affect the eigenfunction over the
region of interest; although there is an amplitude error of a few per cent
in the upper-most layers of the polytrope, the interior nodes are oblivious
to the boundary conditions. This eigenfunction was obtained from a 24-h
simulation wherein the waves were constantly excited over a small region
in the interior.

s = D. Having then recovered the resonant frequencies, the pressure
and velocity eigenfunctions in the interior (s ≤ 1) may be obtained
by evaluating

v∗ = A
iκ

ρcc̃
e−λz0+z0/H s−m/2

× [
Jm(αs1/2) + βYm(αs1/2)

]
, (B36)

p∗ = −Aκe−λz0+z0/H s(m+1)/2

× [
Jm−1(αs1/2) + βYm−1(αs1/2)

]
. (B37)

The acoustic cut-off frequency, ωc, of the model (D ≥ s ≥ 1) is
given by

ωc = c0

√
m2 + 1

2z0

1√
s
. (B38)

The model for this particular test is parametrized by m = 1.5,
z0 = 768 km, D = 90.6198, c0 = 8.51 km s−1, p0 = 1.21 ×
105 dynes cm−2, ρ0 = 2.78 × 10−7 g cm−3, H = z0/(m + 1) km
and g = 14160. × 105 cm s−2. Plotted in Fig. B5 are the analyti-
cal (dotted line) and the simulated (solid line) eigenfunctions. The
sponge is placed adjacent to the upper boundary (located 1232 km
above z0). As can be seen the presence of the sponge does not affect
the interior parts of the acoustic eigenfunction. There is an ampli-
tude error near the upper-most region of the polytrope due to the

Figure B6. Efficacy of the transmitting boundary. The initial condition
is a Gaussian-shaped velocity impulse. Panel (a) shows the situation at
t = 10 min, and the successive panels show the impulses at later instants
in time. The amplitude in panel (d) is of the order of 10−6, significantly
smaller than in panels (a) through (c). Together with the test of Fig. B5, the
boundary seems to do a relatively good job of removing outward propagating
waves while the interior portion of the eigenfunction is seen to be mostly
undisturbed.

combined influence of the boundary condition and the sponge but
the nodes remain mostly unaffected.

A rough test of the efficacy of the boundary conditions is shown
in Fig. B6, where an initial Gaussian-shaped velocity impulse is
allowed to propagate outward. Panel (a) shows the situation at
t = 10 min, and the successive panels show the impulses at later
instants in time. The amplitude in panel (d) is of the order of 10−6,
significantly smaller than in panels (a) through (c). Together with
the test of Fig. B5, the boundary condition seems to allow outward
propagating waves to exit the computational domain while leav-
ing the eigenfunctions relatively undisturbed. A check of this sort
was applied to choose the sponge for the real simulations. Since
the polytrope + isothermal stratification near the surface is very
similar to the model used in the simulations, and since the sponges
are quite similar in structure, we expect that the eigenfunctions in
the simulations are also well retrieved while the sponge damps the
outward propagating waves.
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