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1 Introduction

The term ‘magneto-convection’ summarizes the variety of processes arising
from the dynamic interaction between convective motions and magnetic fields
in an electrically conducting medium. Magneto-convective processes play an
important role in many astrophysical systems; their effects can be best studied
in the case of the Sun, where the relevant spatial and temporal scales of
the phenomena can (in principle, at least) be observed. The generation of
magnetic flux in the Sun by a self-excited dynamo process and the various
spectacular phenomena of solar activity, like sunspots, coronal loops, flares,
and mass ejections all are, directly or indirectly, driven by magneto-convective
interactions.

The large length scales of the typical convective flow structures on the
Sun lead to high (hydrodynamic and magnetic) Reynolds numbers, so that
the magneto-convective processes typically involve nonlinear interactions and
formation of structures and patterns. Fig. 1 illustrates typical regimes of
magneto-convection near the visible solar surface, differing mainly in the
amount of magnetic flux per unit area (i.e., average magnetic field strength)
and the orientation of the field. In the ‘quiet’ Sun, some magnetic flux is con-
centrated in bright magnetic elements, isolated patches with field strengths
exceeding 1000 G (corresponding to 0.1 Tesla). In magnetically active regions,
such magnetic elements densely populate the dark convective downflow net-
work and decrease the size of convective upflows (‘granules’ in solar physics
lingo). In the dark core of a sunspot (the so-called umbra), the strong verti-
cal magnetic field is space-filling and largely suppresses the convective energy
transport. The less dark, striated periphery of a sunspot (the penumbra) har-



108 M. Schüssler et al.

bors a magnetic field which is strongly inclined with respect to the vertical
direction.

Quiet Sun

Plage

Umbra

Penumbra

Fig. 1. Magnetic structure on the visible solar surface and different regimes of
magneto-convection. There is only a small amount of magnetic flux in quiet re-
gions and the convective pattern (hot plasma rising in bright ‘granules’, cooled by
radiation and flowing back into the interior in the network of dark intergranular
lanes) is best visible. In areas with more magnetic flux (plage regions), the flux
becomes assembled in small flux concentrations, which appear bright because of lo-
cally enhanced transparency of the atmosphere. At even higher levels of magnetic
flux density, the convection is largely suppressed by the magnetic field and sunspots
form. They have a dark core (the umbra) with almost vertical magnetic field and a
surrounding region of inclined field (the penumbra), whose striated appearance and
mode of energy transport are not well understood (Image taken with the German
Vacuum Tower Telescope on Tenerife, Spain, operated by the Kiepenheuer-Institut,
Freiburg; courtesy O. von der Lühe)

Realistic numerical simulations of solar magneto-convection represent a
considerable computational challenge. There is an extended range of length
scales between the dominant scale of the convective flow pattern (the gran-
ulation) of about 103 km and the dissipation scales of the order of a few km
and less. The plasma is strongly stratified with pressure scale heights down



Simulation of Solar Radiative Magneto-Convection 109

to about 100 km and even a restricted simulation has to cover a density ratio
of the order of 100. Convective velocities reach the sound speed, so that full
compressibility is mandatory. Solar convection is strongly affected by partial
ionization effects and over some height range near the surface the major part
of the convective energy flux is transported in the form of latent heat. Conse-
quently, the ionization state of the most abundant species (foremost hydrogen)
has to be monitored in the course of the simulation and the related energetics
have to be incorporated into the equation of state, which then cannot be writ-
ten as a closed expression but has to be specified in the form of a numerical
table.

The energetics of the lower solar atmosphere is strongly affected by ra-
diative energy transport. In this region, radiative heating or cooling of the
plasma cannot be considered as a local (diffusive) process since the mean
free path of photons is comparable to or larger than the dominant spatial
scale of the flow patterns and the pressure scale height. Consequently, the
radiative transfer equation for the specific intensity of radiation has to be in-
tegrated along a large number of rays of various angles in order to determine
the radiation incident on each grid cell. In order to correctly represent the
temperature field in the solar atmosphere, the frequency dependence of the
radiation has to be taken into account. This further complicates the problem
because about a million spectral lines contribute to the energy balance in the
solar photosphere.

Another complication is related to the boundary conditions. Because of
the strong stratification and large size of the solar convection zone, the com-
putational box for any realistic simulation of solar convection can only cover
a tiny fraction of the whole convection zone and solar surface. Therefore, we
have numerical boundaries where physically no boundaries are. For the side
boundaries one can assume periodic conditions if the box is much larger than
the dominant scale of the flow, but for the top and bottom boundaries the
situation is less clear in a gravitationally stratified medium. Particularly at
the bottom the assumption of a closed boundary would be quite unrealis-
tic: in compressible convection, the downflows are narrow, fast and coherent
over many scale heights. It is thus necessary to develop appropriate ‘open’
boundary conditions, which permit the free in- and outflow of matter while
maintaining the total mass in the computational box and allowing for the
correct amount of convective energy transport.

In order to meet the computational and methodological challenges, our
ANumE project had three major goals:

1. Develop and evaluate methods to treat frequency-dependent radiative en-
ergy transport in simulations of magnetohydrodynamic processes,

2. develop combined compressible MHD/radiative transfer codes with partial
ionization and open boundaries, and
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3. perform realistic simulations and analyze them with spectral and polariza-
tion diagnostics in order to compare with observations and measurements
of the Sun.

The whole project is carried out in close cooperation with our colleagues A.
Dedner, M. Wesenberg, Christian Rohde, and D. Kröner from the Institute
for Applied Mathematics (IAM) of the University of Freiburg. It proved to be
fruitful to develop two codes more or less in parallel. One development (mainly
by the IAM group) concerned a code based upon MHD Riemann solvers for
non-ideal gases, an unstructured grid with adaptive grid refinement and dy-
namical load balancing for parallel computation. The second code was devel-
oped in cooperation with F. Cattaneo, Th. Emonet, and T. Linde from the
University of Chicago; it is less sophisticated (fixed structured grid, 4th-order
finite-differences and time stepping) and thus was available in 3D somewhat
earlier than the IAM code, so that the developed methods and modules for
non-grey radiative transport (RT) could be incorporated and tested, includ-
ing first full simulation runs. A 2D version of the IAM code has been already
combined with the RT; for the 3D version this is currently been done and first
results are expected in 2004.

This paper is organized as follows. We briefly describe the basic equations
of radiative MHD in Sec. 2. The developments of numerical methods for radia-
tive transfer are discussed in Sec. 3: RT on unstructured grids in Sec. 3.2 and
the treatment of the frequency dependence in Sec. 3.3. Results of simulations
are presented in Sec. 4: first results of 2D simulations with the IAM code com-
bined with RT are shown in Sec. 4.1 while 3D results with the MPAe-Chicago
code and non-grey RT are given in Sec. 4.2. We conclude with a brief outlook
in Sec. 5.

2 Equations of radiative magnetohydrodynamics

The magnetohydrodynamic (MHD) approximation can be used to describe a
collision-dominated, electrically well-conducting, quasi-neutral plasma. These
conditions are fairly well fulfilled in the convection zone and lower atmosphere
of the Sun. Starting from the Maxwell equations (in Gaussian units),

∇× B =
4π

c
j +

1

c

∂E

∂t
, (1)

∇× E = −
1

c

∂B

∂t
, (2)

∇ · E = 4πǫ , (3)

∇ ·B = 0 , (4)

with the electric field E, the magnetic field B, current density j, and electrical
charge density ǫ, the MHD approximation is obtained under the assumptions
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that all material speeds and phase velocities are small compared to the speed
of light and that the plasma can considered to be charge-neutral owing to a
sufficiently high electrical conductivity. These conditions entail that the elec-
trical field is small compared to the magnetic field and that the displacement
current (second term on the right-hand side of (1)) can be neglected. Using
Ohm’s law in a medium locally moving with velocity v,

j = σ(E +
1

c
v×B) , (5)

where σ is the electrical conductivity, we derive a single equation for the time
evolution of the magnetic field, the induction equation, viz.

∂B

∂t
= ∇× (v × B) −∇× (η∇× B), (6)

with the magnetic diffusivity defined as η = c2/4πσ. The induction equation
governs the time evolution of the magnetic field for a given velocity field,
v. The first term on the r.h.s. describes the inductive effect of the velocity
field, the second term accounts for diffusion of magnetic field due to the finite
conductivity of the plasma. The order-of-magnitude estimate for the ratio of
these terms gives the magnetic Reynolds number, Rm = vL/η, where v is
a typical speed and L is a typical length scale of the flow under considera-
tion. Estimates for the photosphere and upper convection zone give magnetic
Reynolds numbers of the order of 105 − 106, so that the diffusion term is
almost negligible in these regions. In the high-Rm regime, Alfven’s theorem

of flux-freezing applies: magnetic field lines are transported by the fluid as if
frozen in and fluid motions relative to the magnetic field are possible only
along the direction of field lines.

The rest of the equations of the MHD approximation are the equations of
hydrodynamics with appropriate magnetic terms in the momentum equation
(the Lorentz force) and the energy equation (the Joule dissipation term in the
case of a non-vanishing magnetic diffusivity). The continuity equation

∂̺

∂t
+ ∇ · (̺v) = 0 (7)

represents mass conservation. The equation of motion is written in momentum
conservation form:

∂̺v

∂t
+ ∇ ·

[

̺vv +

(

p +
|B|2

8π

)

1−
BB

4π

]

= ̺g + ∇ · τ . (8)

Here p is the gas pressure and g the vector of gravitational acceleration. vv

and BB are dyadic products and 1 is the 3 × 3 unit matrix. The magnetic
force (Lorentz force) has been split into the gradient of the magnetic pressure,
pmag = |B|2/8π, and the term −∇·(BB/4π), which represents a tension along
magnetic field lines. The last term on the r.h.s. of (8) is the viscous force,
written as divergence of the viscous stress tensor, τ .
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The energy equation is written in the form

∂e

∂t
+ ∇ ·

[

v

(

e + p +
|B|2

8π

)

−
1

4π
B(v · B)

]

(9)

=
1

4π
∇ · (B × η∇× B) + ∇ · (v · τ ) + ∇ · (K∇T )

+ ̺(g · v) + Qrad .

for the total energy density per unit volume, e, which is the sum of internal,
kinetic and magnetic energy densities. T is the temperature and K the thermal
conductivity. Qrad is the radiative source term which accounts for heating and
cooling of the plasma by radiation. This term is discussed in detail in Sec. 3.

In order to close the system of MHD equations, we have to specify a re-
lation between pressure, p, density, ̺, and internal energy of the gas, eint. At
temperatures typically encountered in the photosphere and upper convection
zone, the solar plasma is partly ionized and the simple thermodynamical re-
lations for an ideal gas do not apply. Owing to the corresponding changes in
the thermodynamical properties of the matter up to 2/3 of the enthalpy flux
is transported by latent heat and buoyancy driving of convective motions is
strongly enhanced. Under the given conditions in the solar photosphere and
the uppermost part of the convection zone it is sufficient to consider only the
first ionization of the eleven most abundant elements in the Sun. The internal
energy per mass unit εint = eint/̺ can be written as

εint =
3

2̺
(ne + na) kT +

1

̺

∑

n∗

i χi, (10)

where the sum runs over the particle species, n∗

i is the number density of
ionized particles of type i, and χi is the corresponding ionization energy. na =
∑

ni is the number density of nuclei, and ne the number density of electrons.
Defining the ionization degree, xi = n∗

i /ni, and the relative abundance, νi =
ni/na, (10) can be rewritten as

εint =
3kT

2µam0

(

1 +
∑

xiνi

)

+
1

µam0

∑

xiνiχi, (11)

where µa is the mean molecular weight of the neutral gas (µa = 1.29 for solar
composition) and m0 is the atomic mass unit. The ionization degrees, xi, are
determined by the set of Saha equations

xi

1 − xi

∑

xiνi =
ui1(T )

ui0(T )

µam0

̺

2 (2πmekT )
3/2

h3
exp (−χi/kT ) . (12)

The temperature dependence of the partition functions ui1, ui0 can be ob-
tained from the literature. For temperatures exceeding about 16, 000 K, the
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elements are almost fully ionized and the temperature dependence can be ne-
glected. In order to obtain the temperature from ̺ and eint, the nonlinear
system of equations (11) and (12) needs to be solved iteratively. Once the
temperature is known, the gas pressure follows from the perfect gas equation:

p = (ne + na) kT =
̺

µam0

(

1 +
∑

xiνi

)

kT. (13)

3 Numerical methods for radiative transfer

3.1 The radiative source term

The photosphere is the region where most of the radiation leaves the Sun and
where radiation takes over from convection as the dominant mechanism of
energy transport. The energy exchange between gas and radiation determines
the temperature structure of the photosphere and is responsible for the en-
tropy drop which acts as the main driver of convection. Therefore any realistic
simulation must include the radiative energy exchange rate, Qrad, as a source
term in the energy equation. Since the mean free path of photons increases
strongly as the atmosphere becomes transparent in the photosphere, radiative
transfer at this height becomes essentially non-local and a diffusion approxi-
mation of radiative energy transport as adequate for the solar interior cannot
be applied.

The starting point for determining Qrad is the (time- and frequency-
dependent) radiative transfer equation (RTE hereafter),

(

1

c

∂

∂t
+ Ω · ∇

)

Iν = κν̺(Sν − Iν) . (14)

The specific intensity, Iν , is defined such that the amount of energy dErad

transported by radiation along direction Ω in the frequency interval (ν, ν+dν)
across an area element dS into a solid angle dω in a time interval dt is

dErad = Iν(x,Ω, t)(Ω · dS) dω dν dt . (15)

Sν is the source function and κν is the frequency-dependent absorption coef-
ficient of the material. Since the travel time of a photon through the photo-
sphere is much shorter than any other relevant timescale, the radiation field
can be assumed to adjust quasi-instantaneously to any change of the thermo-
dynamical state of the gas, i.e. the time derivative in (14) can be neglected
and we obtain:

Ω · ∇Iν = κν̺(Sν − Iν) . (16)

Defining the optical depth of a path element ds as dτν = κν̺ ds the RTE for
a given direction can be written in the form
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dIν(Ω)

dτν
= Sν − Iν(Ω) , (17)

which has the formal solution

Iν(τν) = Iν(0) e−τν +

∫ τν

0

Sν(tν) e−(τν−tν) dtν . (18)

In the case of local thermal equilibrium (LTE), the source function is given
by the Planck function Sν = Bν . The essential premise of LTE is that elastic
collisions between particles represent the dominant interaction on a micro-
scopic level. Then the velocity distribution of particles is Maxwellian and the
ionization states and population numbers of atomic, ionic, and molecular en-
ergy levels are determined by Saha-Boltzmann statistics corresponding to the
local temperature. Significant departures from LTE must be expected in the
upper photosphere, especially in strong spectral lines, for which scattering
dominates over thermal emission and disturbs the detailed energy balance of
LTE. This effect can be neglected as long as these lines do not contribute
significantly to the total (frequency-integrated) energy exchange rate, Qrad.
Since in LTE the source function is independent of the radiation field, (18)
can be integrated in a straightforward manner. The numerical treatment of
radiative transfer is based on this formal solution. Once the radiation field is
known, the radiative energy flux,

Fν =

∫

Iν(Ω)Ω dω , (19)

and the average intensity,

Jν =
1

4π

∫

Iν(Ω) dω , (20)

can be calculated. The radiative heating rate then follows either from

Qrad = −

∫

ν

(∇ ·Fν) dν (21)

or from the equivalent expression

Qrad = 4πκ̺

∫

ν

κν(Jν − Bν) dν . (22)

Consequently, for each cell in the computational grid, the numerical determi-
nation of the radiative heating rate, Qrad, requires a sequence of integrations:

1. Spatial integration of the equation of radiative transfer (16) along a num-
ber of directions to determine the respective specific intensity Iν(Ω),

2. angular integration of Iν(Ω) to determine the radiative energy flux, Fν ,
or the mean intensity Jν , and

3. frequency integration to determine the radiative heating rate from (21) or
(22).
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3.2 Radiative transfer on unstructured grids

In the course of our ANumE project in cooperation with the IAM of the Uni-
versity of Freiburg, we have carried out two studies on the spatial and angular
integrations (steps 1 and 2 in the preceding section) in unstructured grids. The
first study [1] concentrated on the modification of the short-characteristic for-
mal solver [2] for the case of unstructured grids, while the second study [3]
led to the development of a new class of adaptive solvers.

Ignoring the frequency dependence (to be discussed in Sec. 3.3) for the time
being and thus dropping the index ν in all frequency-dependent quantities, a
short-characteristic solver starts from a discretized form of the formal solution
(18) of the RTE. Consider the situation shown on the left panel of Fig. 2: given
the incident intensity Ii+1 at grid point i + 1, characterized by optical depth
τi+1 measured along the ray in the direction −Ω starting from τ(s=∞)=0,
the intensity Ii is given by

Ii = Ii+1 e−∆τi +

∫ τi+1

τi

S(τ) e−(τ−τi) dτ, (23)

where

∆τi = τi+1 − τi =

∫ si

si+1

κ(s)ρ(s) ds. (24)

Accurate numerical evaluation of the integral in (23) would in general be
cumbersome, but after approximating S(τ) by a linear or quadratic function
of τ , it can be written analytically as

∆I =

∫ τi+1

τi

S(τ) e−[τ−τi] dτ =

i+1
∑

j=i−1

Wj Sj , (25)

where the coefficients Wj depend only on the optical depth intervals, ∆τi and
∆τi−1. Approximating κ(s) by a linear or a quadratic function, (24) can also
be replaced by a simple analytic expression in terms of the function values at
the points i + 1, i, and i − 1. Details of the method are described in [1].

The next step towards the determination of QR is the integration of I(Ω)
over 4π steradian of solid angle in order to obtain the mean intensity, J ,
or the radiative flux, F. This integration is expressed as a quadrature sum
over a discrete set of directions. The choice of the directions Ωm and their
weights wm is subject to a few mandatory normalization criteria for the lowest
moments of the intensity. In particular, the mean intensity J =

∑

wmIm

and the flux F = 4π
∑

wmImΩm should obtain their correct values for an
isotropic radiation field. A sensible criterion is the invariance under rotation
around the z−axis over multiples of 90◦. Another desirable criterion, although
difficult to achieve, is that the directions should be distributed as evenly as
possible over the entire sphere. An exact construction procedure of the angular
quadrature has been given in [4]. It can be shown that, for a given quadrature,
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the discretization errors in F are markedly smaller than those in J . Errors are
typically in the percent range for a quadrature with 3 directions per octant;
significant improvements can only be achieved at a high computational cost.

ΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩ

i

τ τ

τ

∆∆

z,s

i i-1

i+1 i-1

ΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩ

A

D

B

E

C

Fig. 2. Left: geometry for the short-characteristic solution of the radiative transfer
equation in direction Ω. Right: radiative transfer on a cell from a triangular grid.
The specific intensity on corner C can be computed once the values on A and B are
available for interpolation on point D (from [1]).

As an example for the adaptation of the short-characteristic method to a
finite-volume scheme on an unstructured grid we consider the planar case with
a triangular grid. The most obvious way to obtain QR would be through (20)
by computing J directly for each cell center, but this straightforward approach
requires excessive and poorly-defined interpolation. It is easier, more efficient,
and more accurate to compute the intensities I at the vertices of the cells and
afterwards use either J or F to compute the cell-average of QR required by a
finite-volume method.

First consider the radiative transfer problem within a single triangle (right
panel of Fig. 2), where we want to compute IC(Ω). The procedure is as follows:
starting from C, tracing the ray in the upwind direction, locate point D where
the ray enters the cell. IC can be computed by means of a short-characteristic
integration over the interval DC provided that the incident intensity ID is
known. In general, point D does not coincide with a vertex of the grid and
ID has to be interpolated from IA and IB, which must therefore be known
beforehand: this requires that the intensities at the vertices are computed in
the proper order. The incident intensities at the periodic side boundaries are
obtained by iteration: from a suitable starting guess for the incident inten-
sities at the vertices of the inflow boundary, compute the intensities at the
corresponding vertices on the opposite boundary — which should be exactly
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the same — and use those as update for the incident intensities. This pro-
cess is repeated until the intensities have converged. Using iteration for the
initialization, however, is tricky because the convergence rate of this iteration
procedure can be slow in the optically thin part of the atmosphere. However,
once the incident intensities have been initialized correctly, iteration can well
be used to update the incident intensities after each time step; the outflow
intensities at time tn provide a good initial guess for the incident intensities
at time tn+1, so that few if any iterations are needed. The radiative transfer
problem for the entire computational domain then simplifies to a sequence of
radiative transfer problems on single triangles.

The simplest short-characteristic integration method uses κC and κD (the
values of the opacity at point C and D, respectively) to define a linear rela-
tion κ(s) on the interval DC. Together with the relation for ρ(s) this yields
an analytic expression for ∆τDC. That, in turn, is used together with SC and
SD to define a linear relation S(τ) to evaluate ∆I from (23). This approach
has limited applicability though: given the strongly non-linear dependence of
κ on T , a small cell-to-cell variation of T already leads to significant non-
linear variation of κ, so that the optical path length ∆τDC is misrepresented.
Straight application of the short-characteristic method with quadratic S(τ) is
not possible, since it requires a point downwind from point C in order to define
the necessary quadratic functions for κ(s) and S(τ). Such a point would be
located outside of the triangle and violate the local character of the method.
However, without significant adverse effects the method can be reformulated
to use an auxiliary point E exactly halfway between D and C to define those
quadratic functions. This quadratic approach significantly increases the max-
imum allowable cell-to-cell variation of T at a given accuracy level of I.

We have implemented radiative transfer routines to compute the radiative
heating rate, Qrad for various 2D model situations on a triangular grid [1].
Qrad can be computed from the mean intensity, J , or from the radiation flux,
F. We have studied the accuracy of the short-characteristic radiative solver on
such a grid and the accuracy of the angular integration required to compute
J and F. It turned out that QJ

R has severe accuracy problems in the optically
thick regions while QF

R is stable and accurate there but may fail completely
in optically thin layers. Therefore, the best solution is a combination of QJ

R

and QF
R with a selector based on the optical path lengths.

In a subsequent study in the course of the ANumE project, Dedner and
Vollmöller [3] have compared a number of methods for the solution of the
equation of radiative transfer on a triangular planar grid. These included
the discontinuous-Galerkin finite element method [5], the long-characteristic
method [6], and the short-characteristic method. All these methods can be
generalized to the 3D case and to different grid geometries in a straightfor-
ward way. As a result of this study, a new class of methods was developed, the
extended-short-characteristic (ESC) solvers, which combine the finite-element
and short-characteristic approaches. In the case of triangles, the first-order
version, ESC1, requires the determination of the intensity on the three node
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A cc B

C

C

DE

ff

A F B

A ee cc dd B

C

DE

F

Fig. 3. To solve the RT equation on a single element using the extended-short-
characteristic (ESC) method it is necessary to calculate the intensity for different
points, depending on the desired order of the method (1 or 2) Left: in the ESC1
method the intensity at point C has to be computed on triangles with only one
inflow edge along the characteristic starting at point cc. Middle and right: in the
ESC2 method the intensities have to be computed at point F (two inflow edges) or
E, C, D (one inflow edge) using the corresponding inflow intensities at point ff or at
points ee, cc and dd respectively (from [3]).

points, while the second-order ESC2 method additionally includes the mid-
points of the edges (see Fig. 3).

The ESC methods combine the idea of local ansatz functions for the so-
lution from the finite element framework with the idea of solving local 1D
initial value problems along characteristics. Variation of the ansatz functions
allows to develop schemes of higher order. The method can be adapted to
specific applications by using ODE solvers for RT equation which depend on
the stiffness of the underlying ODE. Indeed it was found that Runge-Kutta
solvers are superior to the classical formal solution approach with respect to
the error-to-runtime ratio. To speed up the higher order ESC method, an
adaptation strategy including the variation of the order from grid cell to grid
cell is relatively simple to implement because the computation of the intensity
coefficients is independent of the chosen ansatz function. In three space dimen-
sions, the coefficients for the discrete solution are also given by the same ODE
as in 2D, so that this part of the module can be used without modifications.
Details about this study and the ESC methods can be found in [3].

3.3 Frequency-dependent radiative transfer

Since the total absorption coefficient (opacity) in the solar atmosphere com-
prises the effect of the order of 106 atomic and molecular spectral lines, a
number of roughly 106-107 frequency points is required to model the detailed
frequency dependence. While this direct approach is feasible in calculating 1D
static models, the computational cost is intolerable in time-dependent 2D or
3D simulations. The most radical simplification of the problem is achieved by



Simulation of Solar Radiative Magneto-Convection 119

the grey approximation, replacing the frequency-dependent opacity by an av-
eraged value, e.g. the Rosseland mean. The grey approach in combination with
the diffusion approximation may be appropriate in the optically dense subpho-
tospheric regions, where the radiation field is in local equilibrium with the gas,
it is however unsatisfactory in the optically thinner regions where the radia-
tion transfer becomes nonlocal. Here it is not only necessary to treat the full
radiative transfer but also to incorporate line opacities, since line-blanketing
effects have a considerable impact on both the photospheric dynamics and
the emergent intensities. It is well known that the inclusion of line opacities
in calculations of stellar model atmospheres strongly modifies the resulting
temperature profiles, leading to considerably cooler outer layers, while the
temperature is raised in deeper regions (the line cooling and backwarming
effects). The effect of non-grey radiative transfer on the results of our MHD
simulations has been studied in [7] and [8].
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Fig. 4. Left: Sorting of wavelengths according to a discretization of opacity. The
hatched areas mark those parts of the wavelength interval ∆λi for which the opacity
lies in the interval [Lk, Lk+1]. Right: Schematic illustration of the τ -sorting proce-
dure. The wavelength intervals ∆λi are sorted to opacity bins according to the
height where τ = 1 is reached for that wavelength interval, which is indicated by
bold arrows (from [9]).

For reasons of computational feasibility in 2D/3D simulations, one has
to resort to an appropriate statistical treatment of the line opacities that
conserves the non-grey character of the radiation transport while drastically
reducing the computational expense. In the context of time-dependent three-
dimensional simulations, for which the radiative transfer must be solved for
every timestep, the only feasible approach – given the computing resources of
today – is the opacity binning approach, also called multi-bin or multi-group
method [10, 11, 12]. The basic idea of this method is to sort frequencies into
4–6 (non-contiguous) groups according to the geometrical depth in a 1D refer-
ence atmosphere at which optical depth unity at that frequency is reached. For
each of these frequency groups, a separate RT equation with group-integrated
source function and opacity is solved and the respective intensities are then
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added to obtain the total intensity. Under the assumption of local thermo-
dynamic equilibrium (LTE), the (frequency-dependent) source function Sν is
equal to the Planck function, Bν . The opacities can be then be obtained from
pre-compiled tables without having to solve the system of rate equations for
each gridpoint and timestep during a simulation run.

While the opacity binning approach has been tested in the case of 1D static
model atmospheres [13], the application in the context of time-dependent
2D/3D simulations is accompanied by new sources of errors not encountered in
the static 1D case like, for instance, strong lateral variations of the atmospheric
properties and the occurrence of steep velocity gradients and shocks. In order
to gain confidence in the applicability of this approach in simulations, we have
performed in [9] a series of tests of the multigroup method for several 1D and
2D cases with the solution based on opacity distribution functions [14] serving
as the reference solution.

In a plane-parallel atmosphere, a substantial improvement of the radiative
heating rates in comparison to the grey case can be achieved with the multi-
group method already with a moderate number of frequency groups. In order
to test whether this result also holds for situations with substantial lateral
variations, we have considered two cases: a magnetic flux sheet embedded in
a non-magnetic atmosphere and a snapshot from a 2D simulation of solar
surface convection.

Magnetic flux sheet

We consider a simple model of a magnetic flux concentration, a 2D flux sheet.
Using a 1D model atmosphere, the stratification in the interior of the sheet is
shifted downwards by 200 km relative to the surrounding atmosphere, result-
ing in a strong lateral variation of the thermodynamic quantities. The width of
the sheet as a function of height is determined by magnetic flux conservation
together with the condition of total (magnetic plus gas) pressure equilibrium
between the interior and the exterior of the sheet.

At the height z = 0, corresponding to the visible surface (continuum opti-
cal depth unity) in the exterior, the flux sheet has a width of 150 km. The sheet
is fanning out with increasing height as the magnetic pressure necessary to
balance the jump in gas pressure decreases. At the interfaces between the in-
terior and the exterior of the sheet, the atmospheric parameters are smoothed
horizontally over a distance of a few tens of kilometers by way of a Gaussian
error function. Owing to the mirror symmetry of the sheet, the calculations
can be restricted to one half of the flux sheet, with symmetrical boundary
conditions imposed on the sheets symmetry axis (located at x = 0). A Carte-
sian grid with 201× 161 grid points and horizontal and vertical resolutions of
2.5 km and 5 km, respectively, was used.

At equal geometrical height, density and temperature within the flux sheet
are lower than the corresponding values in its surroundings. Consequently, the
flux sheet is more transparent and thus subject to radiative heating from the
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Fig. 5. Horizontal profiles of Qrad at two different heights in a 2D atmosphere with
an embedded flux sheet. x = 0 corresponds to the symmetry axis of the sheet. The
lines indicate the reference solution (obtained using opacity distribution functions,
the grey solution (1 bin, Rosseland opacity) and the solutions for opacity binning
with 3 and 5 bins, respectively (from [9]).

hot ‘walls’ of surrounding plasma. This can be seen in Fig. 5, which shows
the radiative heating rate, Qrad, as a function of the horizontal coordinate
for two geometrical heights. The grey (Rosseland opacity) and multi-group
results are compared with the reference solution based upon an opacity dis-
tribution function (ODF) description of the spectrum with effectively nearly
4000 frequency points. Corresponding to the horizontal temperature gradient,
a heating peak inside the sheet and a stronger cooling region outside form near
the sheet boundary. Below z ≃ −150 km, the outside atmosphere and most
of the boundary region are optically thick and the radiative transfer is essen-
tially grey, so that Qrad is well represented even without a detailed treatment
of the frequency dependence. The maximum relative errors near the heating
and cooling peaks range between 5 and 10 percent.

At z = 100 km (left panel of Fig. 5), both multi-group solutions qualita-
tively reproduce the ODF case while the grey case is much less accurate. The
heating peak at the boundary is shifted outwards by approximately 10 km, the
peak value being reduced by 15 percent with respect to the ODF case, while
the small cooling dip outside is not captured at all. At a still greater height
of 250 km (right panel of Fig. 5), both the 3- and 5-bin approximations yield
acceptable results, though neither captures the full extent of the cooling peak
outside the sheet boundary. The grey solution, on the other hand, does not
even approximately reproduce the reference solution. The heating peak inside

the sheet has vanished; instead, heating takes place immediately outside the
sheet, where the reference solution shows considerable cooling. This behavior
can be explained by the fact that, on the basis of the Rosseland mean, the
interior of the sheet is transparent at a height of 250 km; accordingly, the
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interaction between gas and radiation is very weak within the sheet, resulting
in small values of Qrad. In the optically thicker regions immediately outside
the sheet, radiation originating from deeper, hotter regions at the opposite

sheet boundary and crossing the sheet almost unattenuated, leads to a net
heating effect. This example clearly demonstrates how important a nongrey
approach to radiative transfer can be in optically thin regions in order to
obtain accurate values of Qrad. It also shows that the multi-group approach
leads to a reasonably adequate description of the non-grey effects.

Fig. 6. Horizontal profiles of Qrad for a snapshot from a 2D simulation of solar
convection at heights of 100 km (left panel) and 500 km (right panel) above the
visible solar surface (from [9]).

Convection simulation

As a further step towards more realistic situations we tested the opacity bin-
ning models with a snapshot from a 2D simulation of solar surface convection
[15], which has no relation to the one-dimensional reference atmosphere used
for sorting the frequencies into groups.. The vertical and horizontal extent of
the computational domain is 1400×1400 km2 with a grid resolution of 35 km.
Fig. 6 shows Qrad in horizontal cuts at heights of approximately 100 and 500
km above the visible solar surface, respectively. Similar to results for the flux
sheet, all solutions (including the grey case) agree reasonably well with each
other in the deeper layers, although the errors of the grey case become more
pronounced towards the horizontal boundaries of the domain. The differences
between the 3- and 5- bin solutions are only marginal. At 500 km height, the
grey solution completely fails to reproduce the reference solution while the
5-bin solution excellently matches the reference curve.

In summary we can conclude that our test calculations have shown that the
multi-group approach yields a good approximation to the frequency-integrated
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radiative heating rate at moderate computational cost, which makes it the
method of choice in multidimensional time-dependent MHD simulations. The
advantage over the grey approximation is particularly pronounced in situa-
tions which deviate strongly from the one-dimensional plane-parallel case. In
these cases the radiative transfer is complicated by lateral heating and cool-
ing effects. Grey radiative transfer often fails to capture these effects, which
leads to qualitatively wrong heating rates in the upper photosphere. This is
particularly relevant if magnetic field concentrations are included, since the
partial evacuation of these structures leads precisely to the kind of lateral
inhomogeneities which are not well modeled by the grey approach. The test
calculations with snapshots from numerical simulations have shown that the
good performance of the multi-group method does not strongly depend on the
choice of the reference atmosphere, which underlines the applicability of this
method in realistic multi-dimensional simulations.

4 Simulations results for solar magneto-convection

In the course of the ANumE project, we have developed two codes for the
simulation of radiative MHD. The MHD part of the first code (called IAM-
MPAe code in what follows) is due to our partners at the IAM (University of
Freiburg) and incorporates Riemann solvers for real gases and unstructured
grids. We have implemented the ESC solvers for radiative transfer in the
2D version of this code, calculated the tables of the (non-ideal) equation of
state, and introduced a realistic open boundary condition at the bottom of
the computational box. This code has then be used to follow the formation
of magnetic flux concentrations in the solar atmosphere and to analyze their
oscillation properties [16]. Some of these results are summarized in Sec. 4.1.

The MHD part of the second code has been jointly developed with
colleagues from the University of Chicago. We have introduced a short-
characteristic radiative transfer solver including a non-grey treatment based
upon the multi-group method [7], partial ionization, and an open lower bound-
ary. Results from simulations runs with this code (the MURAM1 code) are
given in Sec. 4.2.

4.1 Convective intensification of magnetic flux

Observations show that the majority of the magnetic flux through the solar at-
mosphere is assembled in magnetic field concentrations with a field strength of
1500 G and above [17]. Such field strengths exceed the value Beq corresponding
to equipartition between magnetic energy density and kinetic energy density
of the convective flows by at least a factor of three. Consequently, the concen-
tration of the magnetic flux cannot be solely due to the passive advection of

1MPAe and University of Chicago RAdiation MHD code
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magnetic field lines by converging convective motions until the Lorentz force
impedes further transport.

It has been suggested that thermodynamic effects play an important role
for the intensification of the magnetic field beyond the equipartition limit, Beq.
The suppression of the horizontal convective motion once the field strength
approaches Beq throttles the energy supply to the magnetic regions. Since at
the solar surface the radiative energy loss into free space continues, this leads
to a substantial cooling of the gas. Under the influence of gravity and pressure
forces, the cool and dense gas sinks down. The downflow is further accelerated
by the convectively unstable (strongly superadiabatic) stratification below the
solar surface. This leads to a partial evacuation of the upper part of the form-
ing flux concentration, which becomes laterally compressed by the external
pressure until the field has grown strong enough to reestablish lateral pres-
sure equilibrium. The combination of processes of flux advection by horizontal
flow, suppression of convection, radiative cooling, downflow and compression
is called convective collapse or convective intensification [18, 19, 20, 21].

We have used the 2D version of the adaptive IAM-MPAe code to study the
convective intensification of magnetic flux in a region of 12, 000 km horizon-
tal size extending in the vertical direction between 300 km above and 900 km
below the visible solar surface. The computational setup is to start with a
slightly perturbed plane-parallel convectively unstable stratification and let
non-magnetic convection develop until a statistically stationary situation is
reached. Then a homogeneous vertical magnetic field of 100 Gauss is intro-
duced and its development followed in the course time.

Fig. 7 (to be found in the section with color pages at the end of this vol-
ume) shows a sequence of snapshots of the magnetic field (field lines) and
the temperature field (color coding), which clearly demonstrates the concen-
tration of the magnetic field into a few intense flux sheets of kilogauss field
strength located in convective downflow regions. The simulations nicely con-
firm the theoretical concepts of flux expulsion and convective collapse. Within
a few minutes, most of the magnetic flux is transported by the converging hor-
izontal flows to the cool downflow region (flux expulsion). Suppression of the
convective energy transport and ongoing radiative cooling leads to downflow
of the gas in the flux concentrations. The reduced internal pressure leads to
lateral compression by the external gas pressure, resulting in a strong inten-
sification of the field strength to kilogauss values. About 20 minutes after
the introduction of the magnetic field, the flux concentrations have merged
into three large flux sheets, which govern the surrounding flow pattern with
strong downflows surrounding the flux sheets. After about 30 minutes this
quasi-stationary situation has fully developed.

Figure 8 shows the temporal evolution of the average field strength in
magnetic flux sheet I in Fig. 7 near the visible solar surface. Two stages of
field amplification can be seen: first, a rapid concentration of the field to about
1 kG by flux expulsion and radiative cooling within the first 3-4 minutes after
the introduction of the magnetic field, which is followed by a second, slower
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Fig. 7. to be continued
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sequel to Fig. 7.

Fig. 7. Time evolution of magnetic field (field lines are shown in black) and tem-
perature (color coded) from a 2D simulation run of solar magneto-convection near
the visible solar surface (located at z ≃ 100 km height). A homogeneous vertical
field of 100 Gauss has been introduced at t = 0 after a statistically stationary con-
vection pattern has evolved. Within a few minutes, most of the magnetic flux is
transported by the converging horizontal flows to the cool downflow region (flux
expulsion). Owing to the suppression of the convective energy transport, the gas
in the flux concentrations cools and sinks; lateral compression by the external gas
pressure then leads to a strong intensification of the field strength, which reaches
kilogauss values. About 20 minutes after the introduction of the magnetic field, the
flux concentrations have merged into three large flux sheets (labeled I,II,III), which
start to determine the surrounding flow pattern with strong downflows surrounding
the flux sheets. After about 30 minutes a quasi-stationary situation has developed.
The velocity field in this state is shown in the form of velocity vectors in the last
panel (from [16]). (See also color figure, Plate 11.)
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Fig. 8. Temporal evolution of the magnetic field strength for the magnetic flux sheet
I in Fig. 7 at a geometrical height roughly corresponding to the visible solar surface.
The field is intensified to about 1 kilogauss within a few minutes by the combined
action of flux expulsion by the convective flow and radiative cooling. The continuing
downflow within the magnetic flux concentration leads to further evacuation and
amplification of the field to values around 2 kilogauss.

increase of the field due to a persistent downflow and evacuation of the upper
layers of the flux sheet. The second process leads to field strengths around 2
kG.

4.2 Formation of dynamic magnetic structure

The MURAM code

The study of the full dynamics of the solar magnetic structure requires real-
istic simulations in three dimensions. As an intermediate step before the full
completion of the 3D version of the IAM-MPAe code by implementation of a
non-grey radiative transfer module (ongoing work, to be finished in 2004), we
have developed the MURAM code. This code allowed us to carry out simula-
tion runs with a full non-grey radiative transfer module in 3D. The MURAM
code solves the MHD and RT equations on a three-dimensional regular Carte-
sian grid with constant grid spacing. The spatial derivatives are discretized
with 4th-order centered differences on a 53 point stencil. Time stepping is
explicit with a 4th-order Runge-Kutta solver. The scheme is stabilized by the
application of shock-resolving diffusion and hyperdiffusivity [22], which pre-
vent the build-up of energy at scales comparable to the size of the grid cells.
These artificial diffusivities assume significant values only near discontinuities
and in regions of unresolved waves while those regions which are well resolved
remain largely unaffected by diffusion. For the equation of state the instanta-
neous ionization equilibrium for the first ionization of the 11 most abundant
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elements is considered. The relevant thermodynamic quantities are stored in
tables from which the required values are interpolated during a simulation
run.

The bottom boundary conditions implemented in the MURAM code per-
mit free in- and outflow of matter and maintain a constant mass in the box
as well as a fixed energy flux through the system. In the present version of
the code, the top of the domain is closed with stress-free boundary conditions
for the horizontal velocity components; the implementation of a more realis-
tic transmitting upper boundary is under development. The magnetic field is
assumed to be vertical at the top and bottom boundaries, the footpoints of
fieldlines are allowed to move freely. The horizontal directions are taken to be
periodic in all variables.

The code is parallelized by means of domain decomposition. The compu-
tational domain is divided into a three-dimensional array of subdomains, each
of which is endowed with two layers of ghost cells at its boundaries as required
by the 4th-order spatial discretization scheme. We use message passing (MPI)
for parallel computers with distributed memory.

The radiative transfer equation is solved for each frequency set deter-
mined by opacity binning and for each direction using the short characteristic
scheme with linear or parabolic interpolation of opacity and source function
as well as linear interpolation of density. In the context of the domain de-
composition used for parallelization, the short characteristic scheme requires
an iteration for each ray direction and each frequency set. For a given ray
direction the scheme starts in each subdomain at those boundaries through
which the radiation enters (the ‘upwind’ boundaries). The intensity values at
these boundaries are assumed to be known. Then the traversal of the subdo-
main proceeds in the downwind direction, systematically moving away from
the upwind boundaries, thus making sure that the upwind intensities required
for the interpolation are always known. However, on those upwind boundaries
of a subdomain which do not coincide with the top or bottom boundary of
the computational box, the intensities are a priori unknown. Therefore, the
scheme is iterated until convergence at the boundaries is obtained. After each
iteration the intensities at a given upwind boundary are updated with the
new values provided by the neighboring subdomain. We found that 2 to 3
iteration steps per frequency set and direction are usually sufficient, if one
chooses as initial guess for the intensities on the upwind boundaries a linear
extrapolation of the values of the previous two time steps.

More details about and further results obtained with the MURAM code
can be found in [7, 23, 24, 25].

Simulation of a solar plage region

A plage region (cf. Fig. 1) is a strongly magnetized part of the solar atmosphere
outside sunspots (but often in their vicinity) with a horizontally averaged
field strength of about 200 G. We have carried out a simulation run in a
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computational box corresponding to a height of 1400 km and 6000×6000 km2

width on the Sun, discretized with a spatial grid of 100× 288 × 288 points.

τ    = 1

6 Mm

6 Mm1.
4 

M
m

B0

800 km

600 km

Fig. 9. Geometrical setup of the simulation runs with the MURAM code. The
vector B0 indicates the vertical homogeneous magnetic field introduced into the
hydrodynamic convection at the beginning of the magnetic phase.

Similarly to the 2D runs described in the previous section, the simulations
with the MURAM code were started as non-magnetic convection. After the
convection had fully developed and reached a statistically stationary state
(about one hour solar time after the start of the simulation), a homogeneous
vertical initial magnetic field of field strength B0 was introduced. Here we
show results from a run with B0 = 200 G, corresponding to a solar plage
region.

Within a few minutes of simulated time (approximately one turnover time
of the convection) most of the magnetic flux has been transported to the
downflow lanes of the convective granulation pattern and intensified to kilo-
gauss field strength. For a snapshot taken about 2 hours solar time after the
start of the magnetic phase, Fig. 10 shows the vertical magnetic field, vertical
velocity, and temperature distributions on a horizontal plane corresponding
roughly to the visible solar surface. In addition, the frequency-integrated in-
tensity (brightness) is shown on the lower right panel. The magnetic map
shows sheet-like magnetic structures extending along convective downflow
lanes, while larger structures with diameters of up to 1000 km appear at the
vertices where several downflow lanes merge. Typical field strengths in these
field concentrations are between 1500 and 2000 G.

The network of magnetic structures is organized on a ‘mesoscale’ which
typically comprises 4–6 convective upflow regions (granules). While this mag-
netic pattern is rather stable (it evolves on a time scale of hours), the small-
scale pattern of the field concentrations is highly time-dependent, with mag-
netic flux being constantly redistributed within the magnetic network. In the
intensity map shown in Fig. 10, the larger flux concentrations appear dark
owing to the reduced efficiency of convective energy transport. There is a
considerable small-scale variation of the intensity within the pore-like flux
concentrations, which is related to localized hot upflows in regions of reduced
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Fig. 10. Snapshot from the simulation of a solar plage region (B0 = 200 G) with
the MURAM code. Brightness map (lower right) and horizontal cuts near the visible
solar surface of vertical magnetic field component (upper left), vertical velocity com-
ponent (upper right) and temperature (lower left). Light and dark shades indicate
higher and lower values, respectively. The velocity plot shows convective upflows
shaded in light grey separated by intergranular downflow lanes. In the magnetic-
field plot, the strong sheet- and pore-like magnetic field concentrations appear in
white.

field strength. In the thin sheets, lateral heating effects in combination with
the depression of the level of optical depth unity lead to a brightening with
respect to the surrounding downflow regions (see Fig. 11).
Fig. 12 shows some statistical properties of the simulation run from a series of
statistically independent snapshots (i.e., with a temporal cadence exceeding
the granule lifetime). A horizontal slice consisting of 8 grid layers (correspond-
ing to a thickness of 112 km), which include the visible solar surface, served
as the basis for the analysis.
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Fig. 11. Radiative properties of a sheet-like magnetic structure in a convective
downflow lane. Left: vertical field strength (top) and brightness (bottom). The verti-
cal line indicates the position of the cut shown on the right panel. Right: grey-shading
of the the temperature distribution in a vertical cut, together with the radiative flux
vectors. There is an influx of radiation from the hot walls of the flux sheet into its
partially evacuated cooler interior. The radiative heating leads to enhanced bright-
ness (shown at the top), so that the flux sheet appears as a bright structure within
the darker downflow lane.

The probability distribution function (PDF) for the magnetic field, signed
with the orientation of its vertical component is shown in the upper left panel
of Fig. 12. It shows a superposition of two components. Most of the volume
considered is occupied by weak field, the probability density dropping off
approximately exponentially with increasing field strength. The distribution
reveals a pronounced local minimum at B = 0, indicating that the magnetic
field, albeit being mostly weak, permeates the whole volume and field-free
regions are largely avoided. Superimposed on this exponential distribution is
a Gaussian “bulge” (the high field strength wing showing the characteristic
parabolic shape on a logarithmic scale) with a maximum around 1500 G, which
reflects the sheet- and pore-like structures in the network of concentrated
magnetic field.

The correlation diagram (joint PDF) of magnetic field strength and incli-
nation angle of the field vector with respect to the horizontal plane given in
the upper right panel of Fig. 12 shows that most of the strong field above the
kilogauss level is vertical and upward directed (which is the orientation of the
homogeneous initial field), presumably as the result of buoyancy forces acting
on the partially evacuated magnetic structures. The inclination angle of weak
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Fig. 12. Statistical properties of a layer of about 110 km thickness around the visible
solar surface. Upper left: probability distribution (PDF) of the field strength, signed
with the vertical orientation of the field vector. Upper right: joint PDF of field
strength and the inclination angle of B with respect to the horizontal, theta(B).
Lower left: joint PDF of flow velocity, signed with its vertical orientation, and field
strength. Lower right: joint PDF of the inclination angles of the flow, theta(v), and
of the magnetic field, theta(B). The grey-scaling indicates the probability density
on a logarithmic scale.

fields is much more evenly distributed. With decreasing field strength a slight
preference for upward directed fields is observed.

The joint PDF of the vertical magnetic field and the flow velocity signed
with the vertical orientation of the flow in the lower left panel of Fig. 12 (pos-
itive velocities correspond to upflows) shows the effect of strong fields on the
fluid motions: while flow velocities up to 8 km s−1 can be found in weak field
regions, the amplitudes of fluid motions are reduced in magnetic structures
with field strengths above 1000 G. Fluid motions are not completely sup-
pressed, however, since the predominantly vertical fields leave vertical fluid
motions largely unaffected. Downflows are preferred inside strong field fea-
tures.
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The lower right panel of Fig. 12 shows the joint PDF of the inclination
angles of magnetic field vector and flow vector with respect to the horizontal
plane. The pronounced diagonal lobe indicates that in most of the volume
considered flow field and magnetic field are more or less aligned. In addition to
this component, one observes a strong correlation of (strong) vertical magnetic
field with downflows.

Further simulations and studies

We have already carried out a number of further simulations with the MU-
RAM code and used the results to study various physical processes on the
Sun. Among these investigations are:

1. A study of the quantitative effects of the frequency-dependent radiative
transport on the simulation results. It turns out that the non-grey treat-
ment leads to significantly smaller temperature fluctuations, particularly
in the upper photosphere. This leads to brightness contrasts in agreement
with observational values [8].

2. A parameter study of magneto-convection with different amount of ver-
tical magnetic flux in the box ranging from B0 = 10 G (‘quiet’ Sun),
B0 = 50 G, B0 = 200 G (the plage region described in the foregoing sec-
tion), to B0 = 800 G. As the average field strength increases, the magnetic
flux concentrations become larger and the field increasingly affects and
eventually dominates the convective motions (Vögler et al., publication in
preparation)

3. Simulations of larger magnetic structures in the solar photosphere. Such
darkish ‘pores’ with diameters of a few Mm represent the transition from
small, bright flux concentrations to dark sunspots. The questions inves-
tigated are: how is a pore held together, how is it affected by energy
transport along the field, how does it interact with the surrounding con-
vection? Further studies concern the atmospheric structure (temperature,
pressure) within a pore and its observational signatures (Cameron et al.,
publication in preparation).

4. A comparison of the fractal dimension of the magnetic field pattern in
the simulations with observations of the magnetic structure in the solar
photosphere. There is a remarkable agreement between simulation and
observation, increasing the confidence in the ‘realism’ of the simulations
[26].

5. A study of the brightness of magnetic flux concentrations when observed
in spectral bands dominated by molecular lines, particularly in Fraun-
hofer’s ‘G band’ with many spectral lines from the CH molecule. Through
the comparison of synthetic images from simulation results with actual
observations, the physical mechanism leading to the brightness contrast
of magnetic structures could be unveiled. The evacuated and heated mag-
netic flux concentrations show lower abundances of CH, leading to less



134 M. Schüssler et al.

absorption in spectral lines and thus larger brightness. These results put
the indirect approach of studying of the magnetic field dynamics in the
solar atmosphere by observing bright features in the G band on a form
physical basis [27].

6. An investigation of the evolution of an initial field with mixed polarity,
i.e., half of the initial magnetic field pointing upward and the other half
downward. This permits the temporal decay of unsigned magnetic flux by
reconnection of field lines and cancellation of opposite polarity flux. By
running simulations with various horizontal distributions of the initially
vertical field (half-by-half, two-by-two,...) and determining the decay rate,
it is possible to determine values of the ‘turbulent’ magnetic diffusivity,
which is a very important quantity for studies of the long-term evolution
of the magnetic flux at the solar surface. Furthermore, the results of such
simulation runs are compared with observations of the magnetic field dy-
namics in regions of mixed polarity on the Sun (Keller et al., publication
in preparation).

7. The various tools developed for spectroscopic and polarimetric analysis
to compare the simulation results with actual solar measurements have
been applied to various magneto-convection simulations. The analysis of
these results and the comparison with observations reveals rich diagnostic
information in good agreement with measurements, which is used to iden-
tify the physical processes behind the observational phenomena (Shelyag
et al., publications in preparation).

5 Summary & Outlook

Our work on the ANumE project(s) has proven to be very fruitful. We have
developed and tested methods to incorporate radiative transfer into MHD
simulations and to take account of the frequency dependence of radiation in
a stellar atmosphere. State-of-the-art codes have been developed and success-
fully applied to simulate magneto-convection in the solar atmosphere. With
the MURAM code we have a fully working 3D code for realistic simulations,
which has already produced a wealth of useful results. This code is our present
‘workhorse’ and several ongoing projects exploit its rich possibilities and ana-
lyze data produced by this code, often in direct comparison with observational
results.

Further development of the MURAM code will include introducing a trans-
mitting boundary condition at the top and using a non-uniform grid in the
vertical direction with a grid spacing proportional to the average pressure.
This will allow us to extend the computational box in the vertical direction.

Work on the 3D version of the IAM-MPAe code still continues and we
expect to have a complete version with radiative transfer in mid 2004. Com-
parison runs with the MURAM code will allow us to optimize the grid re-
finement strategy and will also provide a mutual test of both codes. The
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IAM-MPAe code will then be used to attack the challenging physical ques-
tions of the higher solar atmosphere, in particular the chromosphere, which
is dominated by interacting MHD shock waves. The IAM-MPAe code with
its Riemann solvers and adaptive mesh refinement is perfectly suited for such
kind of environment.
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Magnetic Flux Concentrations Are Bright in Molecular Bands. Astrophys. J,
597, L173–L176 (2003)




