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1. Introduction. The mean–field concept has proved to be a useful tool
for the investigation of magnetohydrodynamic processes with complex fluid mo-
tions. Within this concept mean fields are defined by averaging of the original
fields, here indicated overbars. The magnetic field B and the fluid velocity U are
according to B = B + b and U = U + u split into mean fields, B and U, and
deviations from them, b and u. The mean electromagnetic fields are governed by
equations, which differ formally from Maxwell’s and the completing constitutive
equations for the original fields, or from the corresponding induction equation,
only in one point. In the mean-field versions of the Ohm’s law, and so also in the
induction equation, an additional electromotive force E = u× b occurs. Under
some simplifying assumptions it allows the representation

Ei = aijBj + bijk∇kBj . (1)

Here the Cartesian coordinates and the summation convention are used. The
coefficients aij and bijk are determined by u and U and can depend on B only via
these quantities.

Although so far not generally justified, simple relation (1) for E has been
used in almost all mean-field models of magnetohydrodynamic phenomena, in
particular, in mean–field dynamo models. In a few cases now direct numerical
simulations are available. So the possibility opens up to calculate the tensors
aij and bijk, or equivalent quantities, with the fields u and b taken from these
simulations. In this paper we deal with an example of magnetoconvection as
investigated by Olsen et al. [1] and a geodynamo model by Christensen et al. [2].
In both cases we compare, with a view to the applicability of relation (1), the
mean magnetic field resulting from the mean-field models using the so determined
aij and bijk with that derived immediately from the numerical simulations.

2. The examples considered. In both cases, magnetoconvection and
geodynamo, a rotating spherical shell of an electrically conducting fluid is consid-
ered. The behavior of the fluid velocity U and the magnetic field B are studied
in the Boussinesq approximation. No–slip conditions are posed at the boundaries,
which are in this respect considered as rigid bodies. All surroundings of the spher-
ical shell are considered as electrically non-conducting so that the magnetic field
continues as a potential field in both parts of the outer space. In the magnetocon-
vection case, an imposed toroidal magnetic field is assumed resulting from electic
currents due to sources or sinks on the boundaries. The temperature of the fluid
is assumed to be constant on each of the boundaries.

The non–dimensional basic equations contain four non–dimensional param-
eters, that is, the Ekman number E = ν/ΩD2, a modified Rayleigh number
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Ra = αT g∆TD/νΩ, the Prandtl number Pr = ν/κ and the magnetic Prandtl
number Pm = ν/η. The typical magnitude B0 of the imposed toroidal magnetic
field is expressed by the Elsasser number Λ = B2

0/�µηΩ. As usual, ν, η, κ, �
and αT are kinematic viscosity, magnetic diffusivity, thermal conductivity, mass
density and the thermal volume expansion coefficient of the fluid, and µ is its
magnetic permeability, assumed to be equal to that of free space. Ω is the angular
velocity responsible for the Coriolis force and g the gravitational acceleration. D
means the thickness of the spherical shell and ∆T the difference of temperatures at
the inner and the outer boundaries. In all simulations considered in the following,
D = 0.65r0 is assumed, where r0 is the radius of the outer boundary. In order
to characterize the results of the simulations, we use, in particular, the magnetic
Reynolds number Rm = uD/η with u interpreted as the r.m.s. value of u.

For the numerical solution of the above equations a code is used, which was
originally designed by Glatzmaier [3] and later modified by Christensen et al. [2].

3. The mean-field concept. When applying the mean-field concept to
the these examples, we focus attention on the induction equation only. We refer
now to a spherical coordinate system (r, ϑ, ϕ), the polar axis of which coincides
with the rotation axis of the shell. A mean-vector field is defined by averaging the
components of the original field with respect to the spherical coordinate system
over all values of the azimuthal coordinate ϕ, e.g.,

B = Br(r, ϑ) er + Bϑ(r, ϑ) eϑ + Bϕ(r, ϑ) eϕ.

With this definition of mean fields the Reynolds averaging rules apply exactly. Of
course, all mean fields are axisymmetric about the rotation axis of the shell.

Subjecting the induction equation to averaging, we obtain

∂tB−∇× (U × B + E) − η∇2B = 0 , ∇ ·B = 0 , (2)

with the crucial electromotive force E = u× b mentioned above. If u is given, the
calculation of E further requires the knowledge of b. From the original induction
equation and (2) we may derive

∂tb −∇× (U × b + G) − η∇2b = ∇× (u × B)
G = u× b − u× b , ∇ · b = 0 . (3)

Cancelling G in the first line of (3) leads to the often used “first-order smoothing”
approximation.

For the examples envisaged it can be easily justified that b vanishes if B
does so. If we further assume that B varies only weakly in space and time, we
may conclude that E takes the form (1). This assumption, however, remains
to be checked. Stronger variations of B in space would require to take higher-
order derivatives into account. Relation (1) can also be written in the coordinate-
independent form

E = −α · B− γ × B− β · (∇× B) − δ × (∇× B) − κ · (∇B)(s) (4)

which we refer to in the following; see, e.g., Rädler [4]. Here α and β are sym-
metric second–rank tensors, γ and δ vectors, κ is a third–rank tensor with some
symmetries, and (∇B)(s) the symmetric part of the gradient tensor of B. Like aij

and bijk α, γ, β, δ and κ are also determined by u and U. The α term in (4)
describes in general an anisotropic α–effect, the γ term describes an advection of
the mean magnetic field like that by a mean motion of the fluid. The β and δ
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terms can be interpreted in the sense of an anisotropic electrical mean–field con-
ductivity and the κ term covers various other influences on the mean fields. Due
to the axisymmetry of B some elements of α, γ, β, δ and κ are meaningless, that
is, E remains unchanged if these are changed.

In view of the calculation of E we note that in the examples considered the
configurations of U and B rotate like a rigid body. This allows us to change to a
rotating frame of reference, in which these fields and so also B and E are steady.
The result for E obtained in this rotating frame applies also in the original frame.

Two methods have been used for the calculation of the coefficients α, γ, β,
δ and κ on the basis of the numerical simulations addressed in Sec. 2. They are
described in some more detail in the paper by Schrinner et al. [5]. Method (i)
is based on full equation (3) for b, specified to the steady case. This equation
is solved numerically with u and U taken from the simulations mentioned, but
employing properly chosen “test fields” for B. With the results for b obtained
in this way, E is calculated for each test field, and from these results the α, γ,
β, δ and κ are determined. Method (ii) ignores any mean fluid motion and uses
the first–order smoothing approximation. The steady version of equation (3) for
b with U = 0 and G = 0 can be solved analytically for arbitrary u and B. On
this basis E , and so α, γ, β, δ and κ, can be defined for arbitrary u in the usual
way, and later be specified by choosing u according to the simulations mentioned.

We note that the u values needed for the determination of the coefficients
α, γ, β, δ and κ were in both methods taken from simulations with non–zero B.
That is, the resulting coefficients are already subject to a quenching corresponding
to this B. In a further study they should be compared with those for the limit of
vanishing B.

4. Magnetoconvection. The simulation by Olsen et al. [1] has been
considered with E = 10−3, Ra = 94, Pr = Pm = 1 and with an imposed toroidal
magnetic field corresponding to Λ = 1. In this case the intensity of the fluid
motion is characterized by Rm ≈ 12.

The quantities α, β, γ, δ and κ have been calculated by the two methods
explained above. We consider the results of method (i) as most reliable. A mean-
field model of magnetoconvection based on (2) and (4) with α, β, γ, δ and κ
obtained by method (i) reproduces very well the B-field obtained from the direct
numerical simulations.

The results for α, β, γ, δ and κ obtained by method (ii) fairly agree with
those of method (i) as far as the profiles of these quantities are concerned, but
overestimate their magnitudes typically by a few per cent. We recall that method
(ii) uses the first-order smoothing approximation. In the steady case considered
here it is surely justified for Rm′ � 1 (a sufficient condition), where Rm′ = ul/η,
with u being again the r.m.s. value of u and l a characteristic length of the u–field.
It seems reasonable to assume that l is not much smaller than D, that is, Rm′ is
not much smaller than Rm. A more detailed consideration shows that in the case
considered the results of method (ii) are well acceptable as long as Rm does not
markedly exceed unity.

We have also investigated the quantity δE = (EDNS − EMF1)/
√〈(EDNS)2〉.

Here EDNS means the quantity E immediately extracted from the direct numerical
simulation, and EMF1 that is defined according to (4) (considering no higher than
first-order derivatives of B) with α, β, γ, δ and κ as obtained by method (i) and
B corresponding to the direct numerical simulations (or, what is here the same, to
the mean-field model). Further 〈· · ·〉 means averaging over all r and ϑ of interest
in a meridional plane. With the exception of a few small areas in this plane |δE|
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proves to be much smaller than unity. This indicates that representation (4) is
indeed satisfactory for the example considered.

5. Geodynamo model. We consider now the case E = 10−3, Ra = 100,
Pr = 1, Pm = 5 and Λ = 0, in which the numerical simulations by Christensen
et al. [6] indeed show a dynamo. The intensity of the fluid motions can be
characterized by Rm ≈ 40.

In this case there is a clear difference in the results for α, β, γ, δ and κ
obtained by the two methods.

Several attempts have been made to reproduce the quasi–steady dynamo ob-
served in the direct numerical simulations by a mean-field model using representa-
tion (4) of E with the calculated α, β, γ, δ and κ. The results were not completely
satisfying. The mean-field model with the most reliable choice of these quantities,
that is, with those determined by method (i), proved to be slightly subcritical. The
steady mean magnetic field extracted from the direct numerical simulations, how-
ever, is geometrically rather similar to the slowly decaying one of the mean-field
model.

The quantity δE turns out to be larger than in the case of magnetoconvection
by a factor in the order of 10. This seems to indicate that representation (4)
no longer describes the real E reasonably. The neglect of higher than first-order
derivatives of B is no longer justified.

6. Summary. The two examples considered in this paper lead us to lim-
its of the applicability of two simplifications frequently used in mean-field theory.
Although in these examples the validity of the first–order smoothing approxima-
tion has proved not to be rigourously restricted to Rm much smaller than unity, it
became clear that this approximation does not work well with Rm markedly ex-
ceeding the order of unity. In the second example, in addition, the traditional rep-
resentation of the mean electromotive force considering no higher than first-order
derivatives of the mean magnetic field seems to be no longer justified. Nonethe-
less, the results derived from our mean-field models match the azimuthal averages
extracted from the direct numerical simulations surprisingly well.
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