Coronal expansion and solar wind

- The solar corona over the solar cycle
- Coronal and interplanetary temperatures
- Coronal expansion and solar wind acceleration
- Origin of solar wind in magnetic network
- Multi-fluid modelling of the solar wind
- The heliosphere

Corona of the active sun

Structure of the heliosphere

- Basic plasma motions in the restframe of the Sun
- Principal surfaces (wavy lines indicate disturbances)

Heliosphere and local interstellar medium

$$
\text { (red) }-0.3>\log \left(\mathrm{n}_{\mathrm{e}} / \mathrm{cm}^{3}\right)>-3.7 \text { (blue) }
$$

Energetics of the fast solar wind

- Energy flux at $1 \mathrm{R}_{\mathrm{S}}$: $\quad \mathrm{F}_{\mathrm{E}}=510^{5} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{~s}^{-1}$
- Speed beyond $10 \mathrm{R}_{\mathrm{S}}$: $\quad \mathrm{V}_{\mathrm{p}}=(700-800) \mathrm{km} \mathrm{s}^{-1}$
- Temperatures at
$1.1 \mathrm{R}_{\mathrm{s}}: \quad \mathrm{T}_{\mathrm{e}} \approx \mathrm{T}_{\mathrm{p}} \approx 1-210^{6} \mathrm{~K}$
$1 \mathrm{AU}: \quad \mathrm{T}_{\mathrm{p}}=310^{5} \mathrm{~K} ; \mathrm{T}_{\alpha}=10^{6} \mathrm{~K} ; \mathrm{T}_{\mathrm{e}}=1.510^{5} \mathrm{~K}$
- Heavy ions: $\quad T_{i} \cong m_{i} / m_{p} T_{p} ; V_{i}-V_{i}=V_{A}$

$$
\begin{gathered}
\gamma /(\gamma-1) 2 \mathrm{k}_{\mathrm{B}} \mathrm{~T}_{\mathrm{S}}=1 / 2 \mathrm{~m}_{\mathrm{p}}\left(\mathrm{~V}_{\infty}^{2}+\mathrm{V}^{2}\right) \\
\gamma=5 / 3, \mathrm{v}_{\infty}=618 \mathrm{kms}^{-1}, \quad \mathrm{~T}_{\mathrm{s}}=10^{7} \mathrm{~K} \text { for } \mathrm{v}_{\mathrm{p}}=700 \mathrm{kms}^{-1} \quad-->5 \mathrm{keV}
\end{gathered}
$$

Heliospheric magnetic field

Changing corona and solar wind

Evolution of the current sheet

In situ current sheet crossings

[^0]
Solar wind stream structure and heliospheric current sheet

Solar wind fast and slow streams

Solar wind data from Ulysses

Solar wind types

1. Fast wind near activity minimum

High speed
Low density
Low particle flux
Helium content
Source
Signatures
$400-800 \mathrm{kms}^{-1}$
$3 \mathrm{~cm}^{-3}$
$2 \times 10^{8} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
3.6%, stationary coronal holes stationary for long times (weeks!)
2. Slow wind near activity minimum

Low speed High density
High particle flux
Helium content
Source
Signatures

250-400 $\mathrm{km} \mathrm{s}^{-1}$
$10 \mathrm{~cm}^{-3}$
$3.7 \times 10^{8} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
below 2%, highly variable
helmet streamers near current sheet sector boundaries embedded

Solar wind types

3. Slow wind near activity maximum

Similar characteristics as 2., except for

Helium content
Source
Signatures
4%, highly variable
active regions and small CH
shock waves, often imbedded

4. Solar ejecta (CMEs), often associated with shocks

High speed Helium content Other heavy ions Signatures

400-2000 kms^{-1}
high, up to 30%
often Fe^{16+} ions, in rare cases He^{+}
often magnetic clouds,
about 30\% of the cases related
with erupting prominences

Ulysses First Orbit Ulysses Second Orbit

Fast solar wind speed profile

Radial distance / \mathbf{R}_{s}
Esser et al., ApJ , 1997

Ulysses

Speed profile of the slow solar wind

Speed profile as determined from plasma blobs in the wind

Solar wind models I

Assume heat flux, $Q_{e}=-\rho \kappa \nabla T_{e}$, is free of divergence and thermal equilibrium: $T=T_{p}=T_{e}$. Heat conduction: $\kappa=\kappa_{0} T^{5 / 2}$ and $\kappa_{0}=810^{8}$ erg/(cm s K); with $\mathrm{T}(\infty)=0$ and $\mathrm{T}(0)=10^{6} \mathrm{~K}$ and for spherical symmetry:

$$
4 \pi \mathbf{r}^{2} \kappa(\mathbf{T}) \mathbf{d T} / \mathbf{d r}=\text { const } \quad-->\quad T=T_{0}(R / r)^{2 / 7}
$$

Density: $\rho=n_{p} m_{p}+n_{e} m_{e}$, quasi-neutrality: $n=n_{p}=n_{e}$, thermal pressure: $p=n_{p} k_{B} T_{p}+n_{e} k_{B} T_{e}$, then with hydrostatic equilibrium and $p(0)=p_{0}$:

$$
\mathrm{dp} / \mathrm{dr}=-\mathbf{G M m} \mathbf{p} / \mathbf{r}^{2}
$$

$$
p=p_{0} \exp \left[\left(7 G M m_{p}\right) /\left(5 k_{B} T_{0} R\right)\left((R / r)^{5 / 7}-1\right)\right]
$$

Problem: $\mathrm{p}(\infty)>0$, therefore corona must expand!

Solar wind models II

Density: $\rho=n_{p} m_{p}+n_{e} m_{e}$, quasi-neutrality: $n=n_{p}=n_{e}$, ideal-gas thermal pressure: $p=n_{p} k_{B} T_{p}+n_{e} k_{B} T_{e}$, thermal equilibrium: $T=T_{p}=T_{e}$, then with hydrodynamic equilibrium:

$$
\mathrm{mn}_{\mathrm{p}} V d V / d r=-d p / d r-G M m_{p} n / r^{2}
$$

Mass continuity equation:

$$
\mathrm{mn}_{\mathrm{p}} \mathbf{V} \mathbf{r}^{2}=\mathrm{J}
$$

Assume an isothermal corona, with sound speed $c_{0}=\left(k_{B} T_{0} / m_{p}\right)^{1 / 2}$, then one has to integrate the DE:

$$
\left[\left(V / c_{0}\right)^{2}-1\right] d V / V=2\left(1-r_{c} / r\right) d r / r
$$

With the critical radius, $r_{c}=G M m_{\rho} /\left(2 \mathrm{k}_{B} T_{0}\right)=\left(V_{\sigma} / 2 c_{0}\right)^{2}$, and the escape speed, $\mathrm{V}_{\infty}=618 \mathrm{~km} / \mathrm{s}$, from the Sun's surface.

Solar wind models I I I

Introduce the sonic Mach number as, $M_{s}=V / c_{0}$, then the integral of the $D E$ (C is an integration constant) reads:
$\left(M_{s}\right)^{\mathbf{2}}-\ln \left(M_{s}\right)^{\mathbf{2}}=\mathbf{4}\left(\ln \left(r / r_{c}\right)+\mathbf{r}_{\mathrm{c}} / \mathbf{r}\right)+\mathbf{C}$
For large distances, $M_{s} \gg 1$; and $V \sim(\ln r)^{1 / 2}$, and $n \sim r^{-2} / V$, reflecting spherical symmetry.

Only the „wind" solution IV, with $\mathrm{C}=-3$, goes through the critical point r_{c} and yields: $n->0$ and thus $p->0$ for $r->\infty$. This is Parker's famous solution: the solar wind.

V, solar breeze; III accretion flow

On the source regions of the fast solar wind in coronal holes

Insert: SUMER Ne VIII $770 \AA$ at 630000 K

Chromospheric network Doppler shifts Red: down Blue: up

Outflow at lanes and junctions

Outflow

(A) Sun in EIT wavelength window around 19.5 nm . The white rectangle indicates the size of the SUMER raster scan. A comparison of the structures was made only for the smaller rectangle.
(B) Magnetic field vertical component from - 70 to 70 G (C) Si II radiance in arbitrary units (chromosphere)
(D) C IV radiance in arbitrary units (transition region)
(E) Ne VIII Doppler shifts along the LOS, ranging from $-15 \mathrm{~km} / \mathrm{s}$ to $15 \mathrm{~km} / \mathrm{s}$.
(F) Comparison between the Ne VIII Doppler shift (hatched regions with outflow speeds higher than $7 \mathrm{~km} / \mathrm{s}$) and the magnetic field angle, with 0° indicating vertical and 90° horizontal orientation at a height of 20.6 Mm .

Tu et al., Science 2005

Loops and funnels in equatorial $\mathbf{C H}$

Height profiles in funnel flows

- Heating by wave sweeping
- Steep temperature gradients

Flows and funnels in coronal hole

Tu, Zhou, Marsch, et al., Science, 308, 519, 2005

Mass and energy supply

Sketch to illustrate the scenario of the solar wind origin and mass supply. The plot is drawn to show that supergranular convection is the driver of solar wind outflow in coronal funnels. The sizes and shapes of funnels and loops shown are drawn according to the real scale sizes of the magnetic structures.

Detailed source region

Rotation of the sun and corona

20 - 2 - :32 11

Sun's loss of angular momentum carried by the solar wind

Induction equation:
$\nabla \times(\mathbf{V} \times \mathbf{B})=0 \quad \boldsymbol{- - >} \quad r\left(V_{r} B_{\phi}-B_{r} V_{\phi}\right)=-r_{0} B_{0} \Omega_{0} r_{0}$
Momentum equation:
$\rho \mathbf{V} \cdot \nabla V_{\phi}=1 / 4 \pi$ B. $\nabla B_{\phi} \rightarrow \quad r\left(\rho V_{r} V_{\phi}-B_{r} B_{\phi}\right)=0$
$L=\Omega_{0} r_{A}{ }^{2} \quad$ (specific angular momentum)
$V_{\phi}=\Omega_{0} r\left(M_{A}^{2}\left(r_{A} / r\right)^{2}-1\right) /\left(M_{A}^{2}-1\right)$
$M_{A}=V_{r}(4 \pi \rho)^{1 / 2} / B_{r}$
Alfvén Machnumber

Fluid equations

- Mass flux:

$$
\begin{aligned}
\mathbf{F}_{\mathrm{M}} & =\rho \mathbf{V A} \quad \rho=\mathbf{n}_{\mathbf{p}} \mathbf{m}_{\mathbf{p}}+\mathbf{n}_{\mathbf{i}} \mathbf{m}_{\mathbf{i}} \\
\mathrm{F}_{\mathrm{B}} & =B \mathbf{A}
\end{aligned}
$$

- Magnetic flux:
- Total momentum equation:

$$
V d / d r V=-1 / \rho d / d r\left(p+p_{w}\right)-G M_{s} / r^{2}+a_{w}
$$

- Thermal pressure: $\quad p=n_{p} k_{B} T_{p}+n_{e} k_{B} T_{e}+n_{i} k_{B} T_{i}$
- MHD wave pressure: $p_{w}=(\delta B)^{\mathbf{2}} /(8 \pi)$
- Kinetic wave acceleration: $a_{w}=\left(\rho_{p} a_{p}+\rho_{i} a_{i}\right) / \rho$
- Stream/ flux-tube cross section: A(r)

Model of the fast solar wind

- hot protons, $\mathrm{T}_{\text {max }} \approx 5 \mathrm{M} \mathrm{K}$
- cold electrons
- small wave temperature, T_{w}

Radial distance / R_{S}

The future: Solar Orbiter

> A highresolution mission to the Sun and inner heliosphere

[^0]: Borrini et al., J GR, 1981

