The microstate of the solar wind

- Radial gradients of kinetic temperatures
- Velocity distribution functions
- Ion composition and suprathermal electrons
- · Coulomb collisions in the solar wind
- · Waves and plasma microinstabilities
- Diffusion and wave-particle interaction

Length scales in the solar wind

Macrostructure - fluid scales

 Heliocentric distance: 150 Gm (1AU)

R_s 696000 km (215 R_s) Solar radius:

· Alfvén waves: λ 30 - 100 Mm

Microstructure - kinetic scales

 Coulomb free path: ~ 0.1 - 10 AU

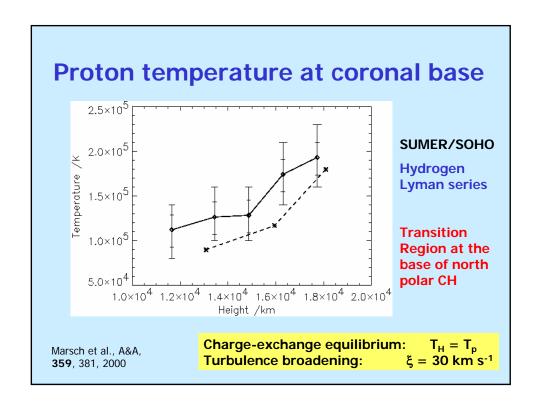
 V_A/Ω_p (c/ ω_p) ~ 100 km Ion inertial length:

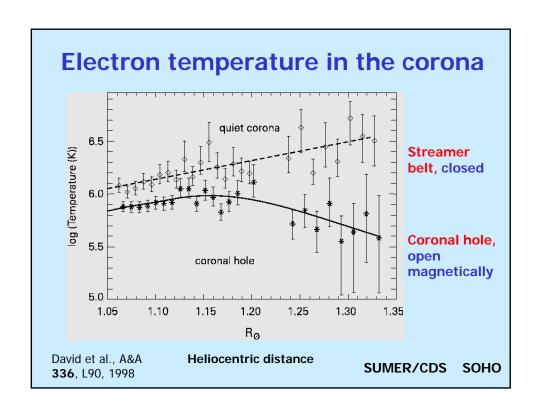
Ion gyroradius: ~ 50 km r_L

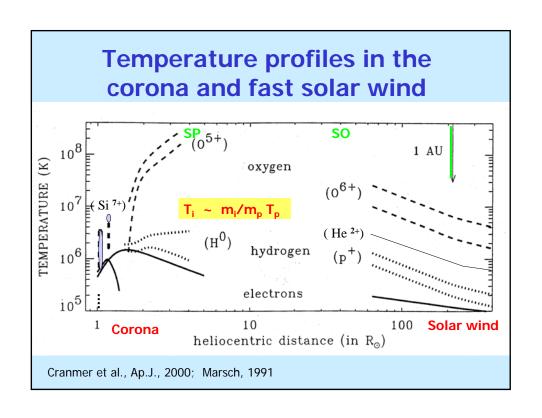
Debye length: ~ 10 m

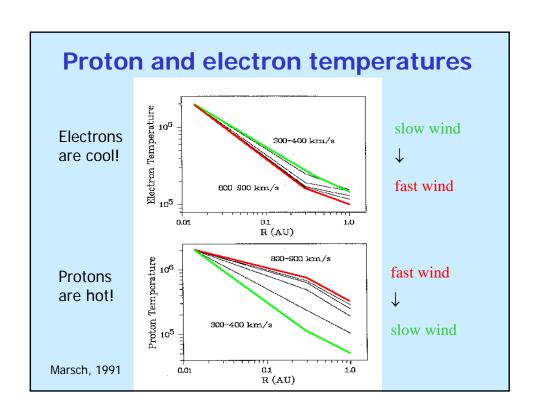
 Helios spacecraft: ~ 3 m

Microscales vary with solar distance!









Theoretical description

Boltzmann-Vlasov kinetic equations for protons, alpha-particles (4%), minor ions and electrons

Distribution functions

Moments

Kinetic equations

- + Coulomb collisions (Landau)
- + Wave-particle interactions
- + Micro-instabilities (Quasilinear)
- + Boundary conditions
- → Particle velocity distributions and field power spectra

Multi-Fluid (MHD) equations

- + Collision terms
- + Wave (bulk) forces
- + Energy addition
- + Boundary conditions
- → Single/multi fluid parameters

Velocity distribution functions

Statistical description: $f_i(\mathbf{x}, \mathbf{v}, t)d^3xd^3v$,

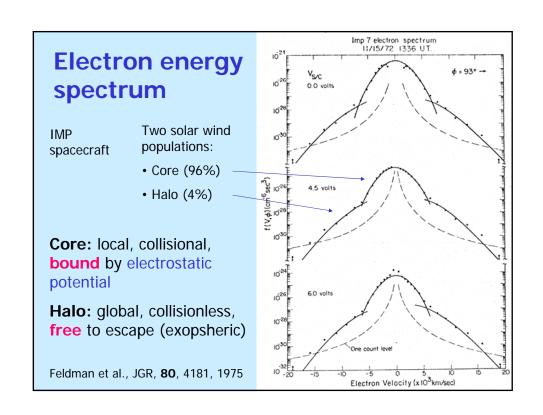
gives the probability to find a particle of species j with a velocity ${\bf v}$ at location ${\bf x}$ at time t in the 6-dimensional phase space.

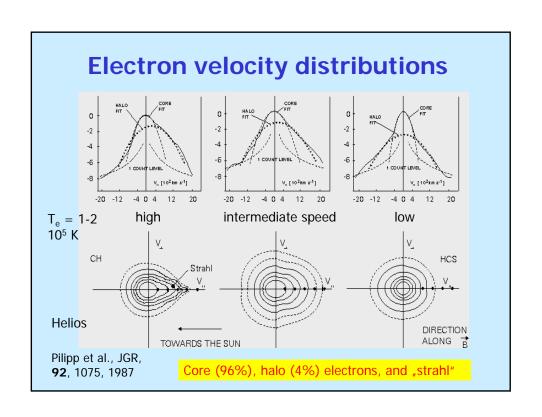
Local thermodynamic equilibrium:

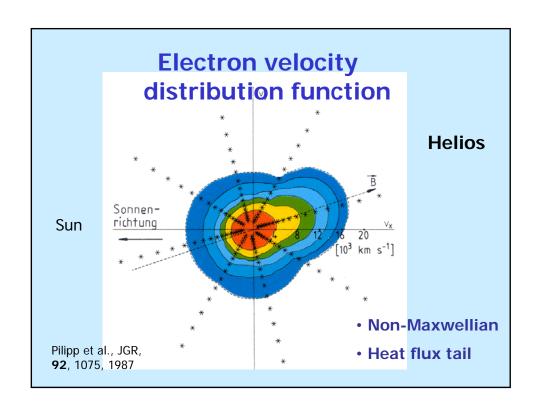
$$f_j^{M}(\boldsymbol{x},\boldsymbol{v},t) \, = \, n_j (2\pi v_j)^{-3/2} \, \exp[-(\boldsymbol{v} \! - \! \boldsymbol{U}_j)^2/v_j^2] \, , \label{eq:fjM}$$

with number density, n_j , thermal speed, v_j , and bulk velocity, \mathbf{U}_i , of species j.

Dynamics in phase space: Vlasov/Boltzmann kinetic equation







Fluid description

Moments of the Vlasov/Boltzmann equation:

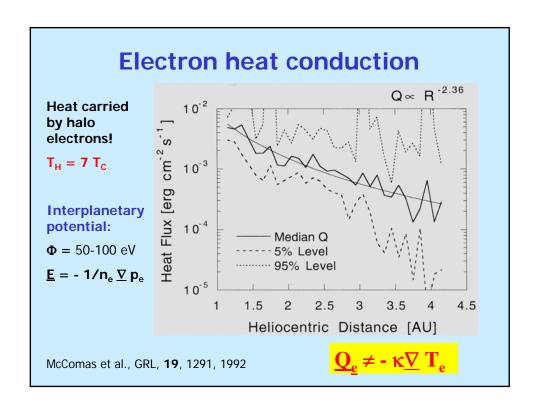
Density: $n_j = \int d^3v \ f_j(\boldsymbol{x},\boldsymbol{v},t)$

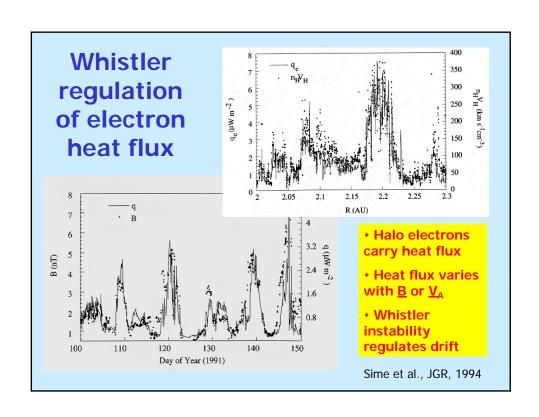
Flow velocity: $\mathbf{U}_{j} = 1/n_{j} \int d^{3}v \ f_{j}(\mathbf{x}, \mathbf{v}, t) \ \mathbf{v}$

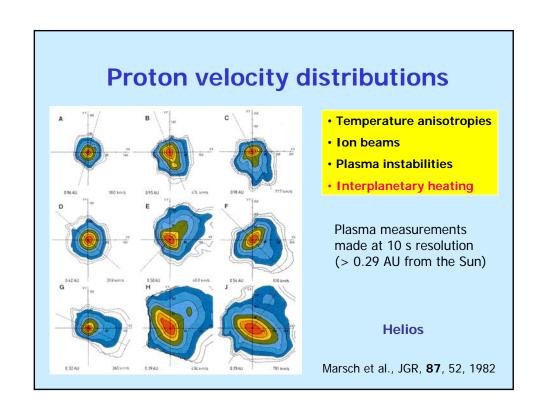
Thermal speed: $v_j^2 = 1/(3n_j) \int d^3v f_j(\mathbf{x}_i \mathbf{v}_i, t) (\mathbf{v} - \mathbf{U}_j)^2$

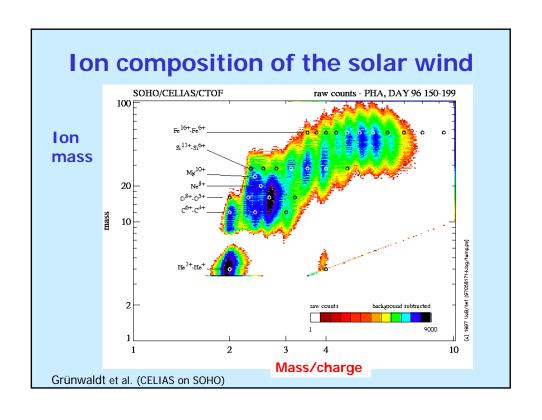
Temperature: $T_j = m_j v_j^2 / k_B$

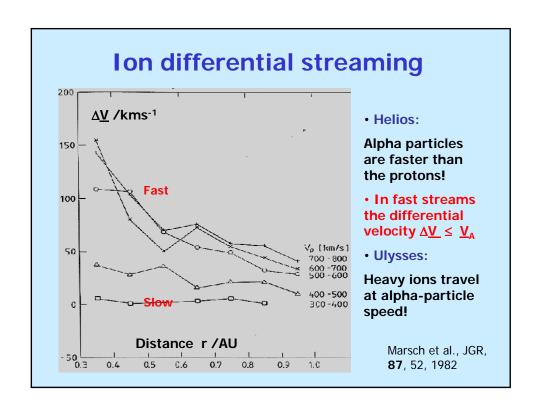
Heat flux: $Q_j = 1/2m_j \int d^3v f_j(\mathbf{x}, \mathbf{v}, t) (\mathbf{v} - \mathbf{U}_j) (\mathbf{v} - \mathbf{U}_j)^2$

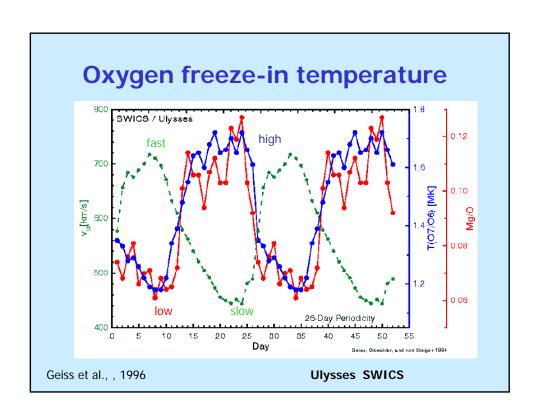












Kinetic processes in the solar corona and solar wind I

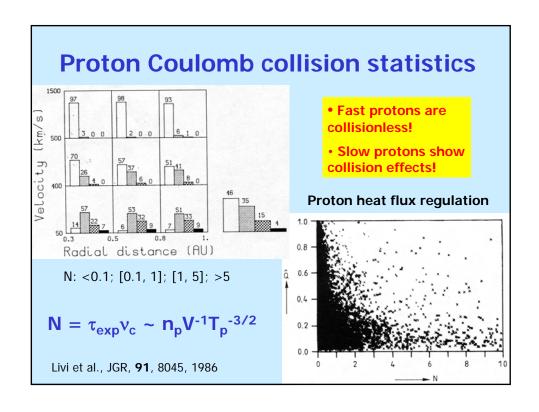
- Plasma is multi-component and nonuniform
- → complexity
- · Plasma has low density
- → deviations from local thermal equilibrium
- → suprathermal particles (electron strahl)
- → global boundaries are reflected locally

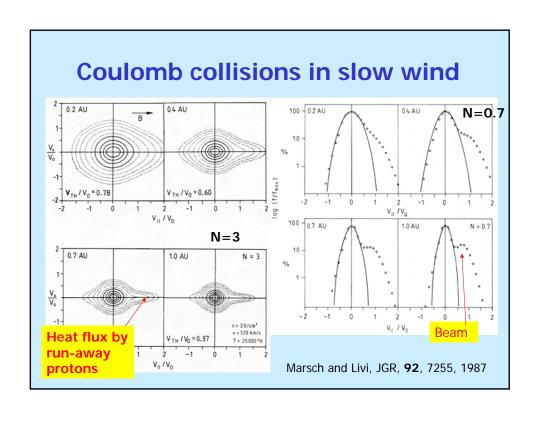
Problem: Thermodynamics of the plasma, which is far from equilibrium.....

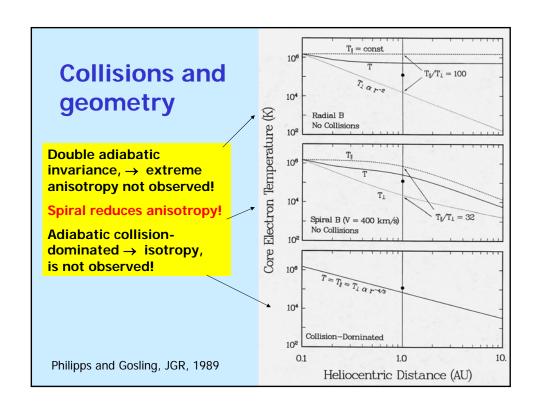
Coulomb collisions

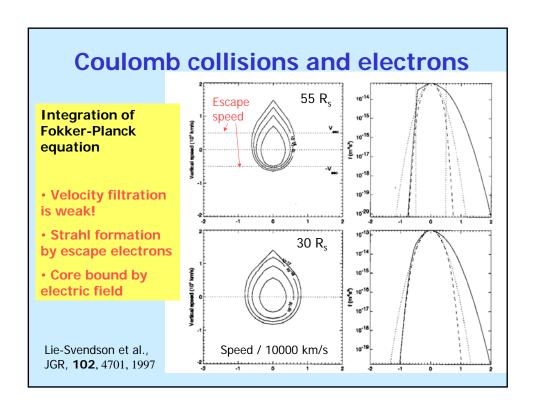
Parameter	011101110	Corona (1R _s)	Solar wind (1AU)
n _e (cm ⁻³)	10 ¹⁰	10 ⁷	10
T _e (K)	10 ³	1-2 10 ⁶	10 ⁵
λ (km)	10	1000	10 ⁷

- Since N < 1, Coulomb collisions require kinetic treatment!
- Yet, only a few collisions ($N \ge 1$) remove extreme anisotropies!
- Slow wind: N > 5 about 10%, N > 1 about 30-40% of the time.





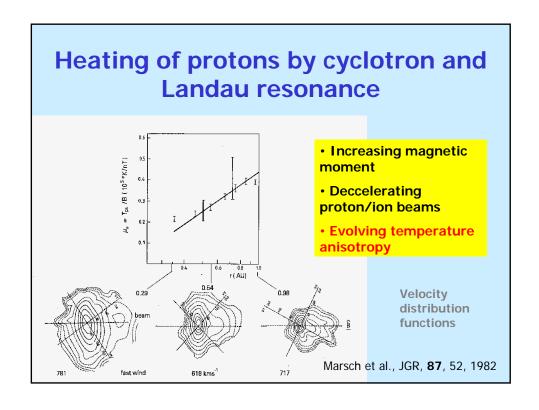




Kinetic processes in the solar corona and solar wind II

- Plasma is multi-component and nonuniform
- → multi-fluid or kinetic physics is required
- Plasma is tenuous and turbulent
- → free energy for micro-instabilities
- → resonant wave-particle interactions
- → collisions by Fokker-Planck operator

Problem: Transport properties of the plasma, which involves multiple scales.....



Wave-particle interactions

Dispersion relation using measured or model distribution functions $f(\underline{v})$, e.g. for electrostatic waves:

$$\varepsilon_{l}(\underline{k},\omega) = 0 \rightarrow \omega(\underline{k}) = \omega_{r}(\underline{k}) + i\gamma(\underline{k})$$

Dielectric constant is functional of $f(\underline{v})$, which may when being non-Maxwellian contain free energy for wave excitation.

 $\gamma(\underline{k}) > 0 \rightarrow \text{micro-instability.....}$

Resonant particles:

 $\omega(\underline{k}) - \underline{k} \cdot \underline{v} = 0$ (Landau resonance)

 $\omega(\underline{k}) - \underline{k} \cdot \underline{v} = \pm \Omega_i$ (cyclotron resonance)

→ Energy and momentum exchange between waves and particles. Quasi-linear or non-linear relaxation.....

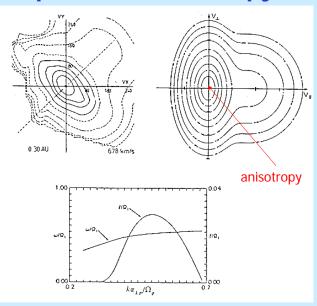
Proton temperature anisotropy

- Measured and modelled proton velocity distribution
- Growth of ioncyclotron waves!
- $\begin{tabular}{l} \bullet \ Anisotropy-driven \\ instability \ by \ large \\ perpendicular \ T_\bot \\ \end{tabular}$

$$\omega \approx 0.5 \Omega_{\rm p}$$

$$\gamma \approx 0.05 \Omega_{\rm p}$$

Marsch, 1991



Temperature anisotropy versus plasma beta

$$A_{\rm B} = T_{\perp} / T_{||} - 1$$

10.0

Helios2
176023-114
Va>600km/s

0.1

0.01

0.10

 $\beta_{\rm B}$

1.00

- · Fast solar wind
- V > 600 km/s
- 36297 proton spectra
- Days 23 -114 in 1976

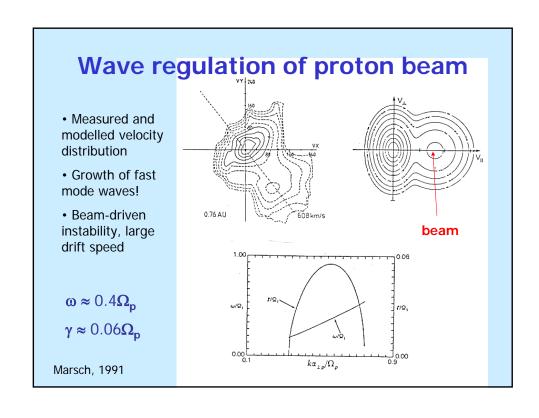
Dashed line refers to plateau:

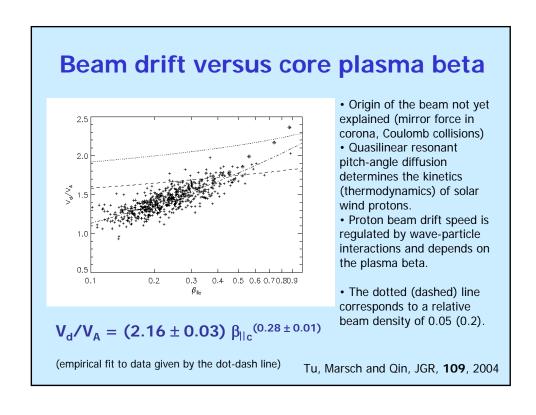
$$A_B = 2 \beta_B^{-1/2}$$

 $\beta_B = 2 (W_{||}/V_A)^2 1.92$

 β_B is the core plasma beta, for VDF values > 20 % of max.

Marsch et al., JGR, 109, 2004



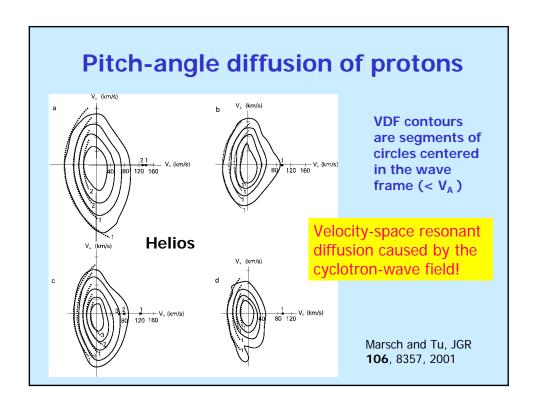


Kinetic plasma instabilities

- Observed velocity distributions at margin of stability
- Selfconsistent quasior non-linear effects not well understood
- Wave-particle interactions are the key to understand ion kinetics in corona and solar wind!

Marsch, 1991; Gary, Space Science Rev., **56**, 373, 1991

Wave mode	Free energy source
Ion acoustic	Ion beams, electron heat flux
Ion cyclotron	Temperature anisotropy
Whistler (Lower Hybrid)	Electron heat flux
Magnetosonic	Ion beams, differential streaming



Quasi-linear (pitch-angle) diffusion

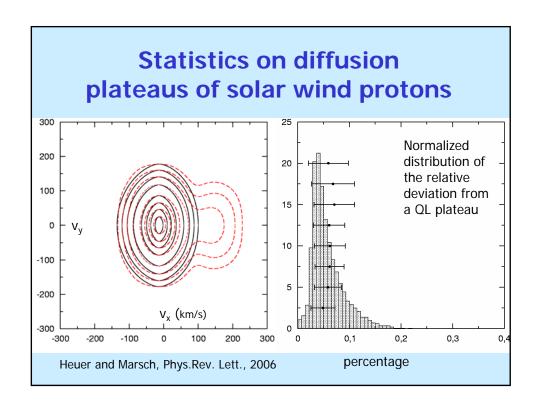
Diffusion equation

$$\begin{split} \frac{\partial}{\partial t} f_j(V_{\perp}, V_{\parallel}, t) &= \sum_{M} \sum_{s = -\infty}^{+\infty} \frac{1}{(2\pi)^3} \int_{-\infty}^{+\infty} d^3k \, \widehat{\mathcal{B}}_M(\mathbf{k}) \\ &\times \frac{1}{V_{\perp}} \frac{\partial}{\partial \alpha} \left(V_{\perp} \nu_j(\mathbf{k}, s; V_{\parallel}, V_{\perp}) \frac{\partial}{\partial \alpha} f_j(V_{\perp}, V_{\parallel}, t) \right) \end{split}$$

Pitch-angle gradient in wave frame

$$\frac{\partial}{\partial \alpha} = V_{\perp} \frac{\partial}{\partial V_{||}} - \left(V_{||} - \frac{\omega_{M}(\mathbf{k})}{k_{||}}\right) \frac{\partial}{\partial V_{\perp}}$$

Kennel and Engelmann, Phys. Fluids, **9**, 2377, 1966



Summary

- In-situ ion and electron measurements indicate strong deviations from local (collisional) thermal equilibrium
- Wave-particle interactions and micro-instabilities regulate the kinetic features of particle velocity distributions
- Kinetic models are required to describe the essential features of the plasma in the solar wind
- The non-equilibrium thermodynamics in the tenuous solar wind involve particle interaction with micro-turbulent fields
- Wave energy transport as well as cascading and dissipation in the kinetic domain are still not well understood