Structures, waves and turbulences in the solar wind

- Solar wind and heliospheric magnetic field
- The heliosphere, structure and dynamics
- Fluctuations: scales and parameters
- Magnetoacoustic and Alfvénic fluctuations
- Turbulence spectra and radial evolution
- Ideal MHD invariants and dissipation
- · Cross-helicity, anisotropy, compressibility
- Scaling and intermittency

Length scale	es in th	e solar wind
Macrostru	ucture - fl	uid scales
Heliocentric distance:	r	150 Gm (1AU)
Solar radius:	R _s	696000 km (215 R _s)
 Alfvén waves: 	λ	30 - 100 Mm
Microstru	icture - k	inetic scales
 Coulomb free path: 	I	~ 0.1 - 10 AU
 Ion inertial length: 	V _A /Ω _p (c.	/ω _p) ~ 100 km
Ion gyroradius:	r _L	~ 50 km
Debye length:	λ_{D}	~ 10 m
Helios spacecraft:	d	~ 3 m
Microscales v	ary with s	solar distance!

Spatial and temporal scales

Phenomenon I	Frequency (s ⁻¹)	Period (day)	Speed (km/s)
Solar rotation:	4.6 10 ⁻⁷	25	2
Solar wind expansion	: 5 - 2 10 ⁻⁶	2 - 6	800 - 250
Alfvén waves:	3 10 ⁻⁴	1/24	50 (1AU)
Ion-cyclotron waves:	1 - 0.1	1 (s)	(V _A) 50
Turbulent cascade	e: gene	ration +	transport
\rightarrow inertial range	→ kineti	crange + o	dissipation

Parameter	Coronal Hole (open)	Current sheet (closed)
Alfvén waves: Density fluctuations: Magnetic/kinetic turbulent energy:	yes weak (<3%) ≅ 1	no intense (>10%) > 1
Spectral slope:	flat (-1)	steep (-5/3)
Wind speed: T _p (T _e): Wave heating:	high high (low) strong	low low (high) weak

MHD turbulence dissipation through absorption of dispersive kinetic waves

- Viscous and Ohmic dissipation in collisionless plasma (coronal holes and fast solar wind) is hardly important
- Waves become dispersive (at high frequencies beyond MHD) in the multi-fluid or kinetic regime
- Turbulence dissipation involves absorption (or emission by instability) of kinetic plasma waves!
- Cascading and spectral transfer of wave and turbulence energy is not well understood in the dispersive dissipation domain!

