Solar Corona and Heliosphere

Eckart Marsch

Max-Planck-Institut für Aeronomie

- The Sun's corona and solar wind structure, evolution and dynamics of the heliosphere
- Waves and turbulence in the solar wind
- Temperatures in the corona and heliosphere
- Ions and electrons velocity distributions, kinetic physics and fluid models

The visible solar corona

Electron density in the corona

Heliocentric distance / R_s

Guhathakurta and Sittler, 1999, Ap.J., **523**, 812

Skylab coronagraph/Ulysses in-situ

The magnetic carpet

High-resolution imaging (35 km pixels) of the corona

Magnetic modelling:

- Loops (carpet)
- Open coronal funnels
- Closed network

Magnetic loops on the Sun

Active regions

The inner frontier: Solar Orbiter

A high-resolution mission to the Sun and inner heliosphere

Corona and magnetic network

Active regions near minimum

Corona and transition region

Active regions near maximum

X-ray corona

Yohkoh SXT 3-5 Million K

Fast solar wind speed profile

Radial distance / R_s

Esser et al., ApJ, 1997

Fast solar wind parameters

- Energy flux at 1 R_s : $F_E = 5 \ 10^5 \ erg \ cm^{-2} \ s^{-1}$
- Speed beyond 10 R_s : $V_p = (700 800) \text{ km s}^{-1}$
- Proton flux at 1 AU: $n_p V_p = 2 \ 10^8 \ cm^{-2} \ s^{-1}$
- Density at 1 AU: $n_p = 3 \text{ cm}^{-3}; n_{\alpha}/n_p = 0.04$
- Temperatures at 1 AU:

 $T_p = 3 \ 10^5 \ K$; $T_a = 10^6 \ K$; $T_e = 1.5 \ 10^5 \ K$

• Heavy ions: $T_i \cong m_i / m_p T_p$; $V_i - V_p = V_A$

Rotation of solar corona

Fe XIV 5303 Å

Time series: 1 image/day (24-hour averages)

27.2 days

LASCO /SOHO

Stenborg et al., 1999

Long-lived coronal patterns exhibit uniform rotation at the equatorial rotation period!

Model of coronal-heliospheric field

Fisk, JGR, 1996

(Parker) spiral interplanetary magnetic field

rot(**E**) = rot(**V**X**B**) = **0**

Heliospheric magnetic field

McComas et al., 1998

Ulysses SWOOPS

Coronal magnetic field and density

Dipolar, quadrupolar, current sheet contributions

et al., 1998;

1997

Polar diagram of solar wind

Latitudinal variation of the heliospheric magnetic field

Polar plot of mass/momentum flux

McComas et al., 1998

Ulysses SWOOPS/SWICS

Heliosphere and local interstellar medium

(red) $-0.3 > \log(n_e/cm^3) > -3.7$ (blue)

Kausch, 1998

Structure of the heliosphere

- Basic plasma motions in the restframe of the Sun
- Principal surfaces (wavy lines indicate disturbances)

Inventory of the heliosphere

- Interplanetary magnetic field (sun)
- Solar wind electrons and ions (corona)
- Solar energetic particles (solar atmosphere)
- Anomalous cosmic rays (planets, heliopause)
- Cosmic rays (galaxy)
- Pick-up ions (solar wind, dust, surfaces)
- Energetic neutrals (heliopause)
- Dust (interstaller medium, minor bodies)

The outer frontier

Termination schock at about 100 AU and Voyager at 80 AU

Length scales in the heliosphere

Macrostructure - fluid scales

 Heliocentric distance: 	r	150 Gm (1AU)		
• Solar radius:	R _s 6	596000 km (215 R _s)		
• Alfvén waves:	λ 3	0 - 100 Mm		
Microstructure - kinetic scales				
• Coulomb free path:	I	~ 0.1 - 10 AU		
 Ion inertial length: 	V_A/Ω_p (c/ω _p)	~ 100 km		
 Ion gyroradius: 	r _L	~ 50 km		
• Debye length:	λ_{D}	~ 10 m		
• Helios spacecraft:	d	~ 3 m		

Microscales vary with solar distance!

Solar wind stream structure and heliospheric current sheet

Stream interaction region

- Wave amplitude steepening (n~ r⁻²)
- Compression and rarefaction
- Velocity shear
- Nonlinearity by advection (<u>V</u>•▽)<u>V</u>
- Shock formation (co-rotating)

Solar wind fast and slow streams

Spatial and temporal scales

Phenomenon	Frequency (s ⁻¹)	Period (day)	Speed (km/s)
Solar rotation:	4.6 10 ⁻⁷	25	2
Solar wind expansion	n: 5 - 2 10 ⁻⁶	2 - 6	800 - 250
Alfvén waves:	3 10 -4	1/24	50 (1AU)
Ion-cyclotron waves	: 1-0.1	1 (s)	(V _A) 50

Turbulent cascade:generation+transport \rightarrow inertial range \rightarrow kinetic range+dissipation

Compressive fluctuations in the solar wind

Reduced wave number $K^* = k/2\pi(1/km)$

Marsch and Tu, JGR, **95**, 8211, 1990

Kolmogorov-type turbulence

Alfvénic fluctuations

 $\delta \mathbf{V} = \pm \, \delta \mathbf{V}_{\mathbf{A}}$

Neubauer et al., 1977

Spectral indices and spatial evolution of turbulence

Solar wind turbulence

Parameter	Coronal Hole (open)	Current sheet (closed)
Alfvén waves: Density fluctuations: Magnetic/kinetic turbulent energy:	yes weak (<3%) ≅ 1	no intense (>10%) > 1
Spectral slope:	flat (-1)	steep (-5/3)
Wind speed: T _p (T _e): Wave heating:	high high (low) strong	low low (high) weak

Yohkoh SXT: The Changing Corona

Changing corona and solar wind

New solar wind data from Ulysses

1998/06/02 13:31 Observation by **LASCO-C2 on SOHO.**

Note the helical structure of the prominence filaments!

Speeds of CMEs (1996 to 1998)

- Flare-associated fast CMEs with
 0.3 ms⁻² and initial V > 700 km/s
- Eruptive slow CMEs with 0-50 ms⁻² and initial V = 10-20 km/s

St.Cyr et al., 2000

Corona of the active sun

Speed profile of the slow solar wind

Sheeley et al., Ap.J., **484**, 472, 1998

Consistent with Helios data

North coronal hole in various lines

1400000 K 1100000 K Mg X 624.9 (1 100 000 K) 230000 K O V 629.7 (230 000 K) 180000 K N V 1238.8 (180 000 K)

10000 K

FeXII 1242 Å Fe XII 1242.0 (1 400 000 K) MgX 624.9 Å OV 629.7 Å NV 1238.8 Å cont. 1240 Å

Forsyth & Marsch, Space Sci. Rev., 89, 7, 1999

SUMER/SOHO 10 August 1996

Proton temperature at coronal base

Marsch et al., A&A, in press, 2000 Charge-exchange equilibrium: $T_H = T_p$ Turbulence broadening: $\xi = 30 \text{ km s}^{-1}$

Electron temperature in the corona

Heavy ion heating proportional to charge/mass by cyclotron resonance

8.0 1996 Nov.6, Dec.7,10 Ω~Z/A 7.5 Mg X Ne VIII Mg VIII Si VIII Fe XII 7.0 **Heavy ion** ∙ ₹ (J/K) [00] temperature Z/I● 4 6.5 **T=(2-6) MK** Magnetic mirror in 6.0 coronal funnel/hole $r = 1.15 R_s$ Cyclotron resonance 5.5 \Rightarrow increase of μ Tu et al., Space Sci. 3 **SUMER/SOHO** 5 2 4 6 A/Z Rev., 87, 331, 1999

Temperature profiles in the corona and fast solar wind

Heliospheric temperatures

Theoretical description

Boltzmann-Vlasov kinetic equations for protons, alpha-particles (4%), minor ions and electrons

Distribution functions

Kinetic equations

- + Coulomb collisions (Landau)
- + Wave-particle interactions
- + Micro-instabilities (Quasilinear)
- + Boundary conditions

→ Particle velocity distributions and field power spectra

Multi-Fluid (MHD) equations

Moments

- + Collision terms
- + Wave (bulk) forces
- + Energy addition
- + Boundary conditions
- → Single/multi fluid parameters

Coulomb collisions

Parameter	Chromo -sphere	Corona (1R _S)	Solar wind (1AU)
n _e (cm ⁻³)	10 ¹⁰	10 ⁷	10
T _e (K)	10 ³	1-2 10 ⁶	10 ⁵
λ (km)	10	1000	10 ⁷

- Since N < 1, Coulomb collisions require kinetic treatment!
- Yet, only a few collisions (N \geq 1) remove extreme anisotropies!
- Slow wind: N > 5 about 10%, N > 1 about 30-40% of the time.

Electron velocity distributions

Pilipp et al., JGR, **92**, 1075, 1987

Core (96%), halo (4%) electrons, and "strahl"

Electron heat conduction

McComas et al., GRL, **19**, 1291, 1992

$$\underline{\mathbf{Q}}_{\underline{\mathbf{e}}} \neq - \kappa \underline{\nabla} \mathbf{T}_{\underline{\mathbf{e}}}$$

Kinetic processes in the solar corona and solar wind

- Plasma is multi-component and nonuniform
- \rightarrow complexity
- Plasma is dilute
- \rightarrow deviations from local thermal equilibrium
- → suprathermal particles (electron strahl)
- \rightarrow global boundaries are reflected locally

Problem: Thermodynamics of the plasma, which is far from equilibrium.....

Proton velocity distributions

- Temperature anisotropies
- Ion beams
- Plasma instabilities
- Interplanetary heating

Plasma measurements made at 10 s resolution (> 0.29 AU from the Sun)

Marsch et al., JGR, **87**, 52, 1982

Proton temperature anisotropy

- Measured and modelled proton velocity distribution
- Growth of ioncyclotron waves!
- Anisotropy-driven instability by large perpendicular $T_{\!\perp}$

ω ≈ 0.5Ω_p γ ≈ 0.05Ω_p

Marsch, 1991

Ion differential streaming

• Alpha particles are faster than the protons!

 In fast streams the differential velocity is:
 △<u>V</u> ≤ <u>V</u>_A

• Heavy ions travel at alphaparticle speed

Distance r /AU

Marsch et al., JGR, 87, 52, 1982

Fluid equations

- Mass flux: $F_M = \rho V A$ $\rho = n_p m_p + n_i m_i$
- Magnetic flux: $F_B = B A$
- Total momentum equation: $V d/dr V = - 1/\rho d/dr (p + p_w) - GM_s/r^2 + a_w$
- Thermal pressure: $p = n_p k_B T_p + n_e k_B T_e + n_i k_B T_i$
- MHD wave pressure: $p_w = (\delta B)^2 / (8\pi)$
- Kinetic wave acceleration: $a_w = (\rho_p a_p + \rho_i a_i)/\rho$
- Stream/flux-tube cross section: A(r)

Rapid acceleration of the high-speed solar wind

McKenzie et al., A&A, **303**, L45, 1995

Heating: $Q = Q_0 \exp(-(r - R_S)/L)$; Sonic point: $r \approx 2 R_S$

Important questions

• How is the Sun's magnetic field generated?

• How are the slow wind and CMEs accelerated?

• How is the solar corona heated?

• How is plasma turbulence generated and dissipated?

On the source regions of the fast solar wind in coronal holes

Image: EIT Corona in Fe XII 195 Å at 1.5 M K

Insert: SUMER Ne VIII 770 Å at 630 000 K

Chromospheric network Doppler shifts Red: down Blue: up

Outflow at lanes and junctions

Hassler et al., Science 283, 811-813, 1999

Magnetic network loops and funnels

Structure of transition region

Magnetic field of coronal funnel

Dynamic network and magnetic furnace by reconnection

Science Reviews, 87, 25, 1999

Evolution of magnetic loops

Kinetic plasma instabilities

- Observed velocity distributions at margin of stability
- Selfconsistent quasior non-linear effects not well understood
- Wave-particle interactions are the key to understand ion kinetics in corona and solar wind!

Wave mode	Free energy source
Ion acoustic	Ion beams, electron heat flux
Ion cyclotron	Temperature anisotropy
Whistler (Lower Hybrid)	Electron heat flux
Magnetosonic	Ion beams, differential streaming

Marsch, 1991; Gary, Space Science Rev., **56**, 373, 1991

Energy equations

Heating functions:

Wave energy absorption/emission by wave-particle interactions ! Conduction/collisional exchange of heat + radiative losses