SOLAR PHOTOSPHERE AND CHROMOSPHERE

Franz Kneer

Universitäts-Sternwarte Göttingen

Contents

1	Introduction	2
2	A coarse view – concepts	2
	2.1 The data	2
	2.2 Interpretation – first approach	4
	2.3 non-Local Thermodynamic Equilibrium – non-LTE	6
	2.4 Polarized light	9
	2.5 Atmospheric model	9
3	A closer view – the dynamic atmosphere	11
	3.1 Convection – granulation	12
	3.2 Waves	13
	3.3 Magnetic fields	15
	3.4 Chromosphere	16
4	Conclusions	18

1 Introduction

Importance of solar/stellar photosphere and chromosphere:

- photosphere emits 99.99% of energy generated in the solar interior by nuclear fusion, most of it in the visible spectral range
- photosphere/chromosphere visible "skin" of solar "body"
- structures in high atmosphere are rooted in photosphere/subphotosphere
- dynamics/events in high atmosphere are caused by processes in deep (sub-)photospheric layers
- chromosphere: onset of transport of mass, momentum, and energy to corona, solar wind, heliosphere, solar environment chromosphere = burning chamber for pre-heating non-static, non-equilibrium

Extent of photosphere/chromosphere:

• barometric formula (hydrostatic equilibrium):

$$dp = -\rho g dz$$
 and $dp = -p \frac{\mu g}{\mathcal{R}T} dz$ (1)

$$\Rightarrow \quad p = p_0 \exp[-(z - z_0)/H_p] \tag{2}$$

with "pressure scale height" $H_{\rm p} = \frac{\mathcal{R}T}{\mu g} \approx 125 \,\mathrm{km}$ (solar radius $R_{\odot} \approx 700\,000 \,\mathrm{km}$)

- extent: some $2000 6000 \,\mathrm{km}$ (rugged)
- "skin" of Sun

In following: concepts, atmospheric model, dyanmic atmosphere

2 A coarse view – concepts

2.1 The data

radiation ($\hat{=}$ energy) solar output: measure radiation at Earth's position, distance known

$$\Rightarrow \quad \mathcal{F}_{\odot} = \sigma T_{\text{eff},\odot}^4 = L_{\odot} / (4\pi R_{\odot}^2) = 6.3 \times 10^{10} \text{ erg cm}^{-2} \text{ s}^{-1}$$
(3)

$$\Rightarrow \quad T_{\text{eff},\odot} = 5780 \,\text{K}\,. \tag{4}$$

specific intensity $I_{\nu} = I(\vec{r}, \vec{\Omega}, \nu, t)$

- I depends on wavelength λ (or frequency ν),
- meaurements in: UV, optical (visible), IR/FIR, mm, radio
- absorption lines = Fraunhofer lines, emission lines in UV
- I depends on direction $(\vec{\Omega})$ and time (t)

Figure 1: Examples of Fraunhofer lines in the visible spectral range near CaIIK, Na D₁ and Na D₂, and Balmer H α ; from Kitt Peak *Fourier Transform Spectrometer Atlas*.

2.2 Interpretation – first approach

a) Transfer of radiation

$$\mathrm{d}I_{\nu} = -\kappa_{\nu}I_{\nu}\mathrm{d}s + \varepsilon_{\nu}\mathrm{d}s \tag{5}$$

 κ_{ν} = absorption coefficient, ε_{ν} = emission coefficient, to be specified,

$$\frac{\mathrm{d}I_{\nu}}{\mathrm{d}s} = -\kappa_{\nu}I_{\nu} + \varepsilon_{\nu} \; ; \; \vec{\Omega} \cdot \nabla I_{\nu} = -\kappa_{\nu}I_{\nu} + \varepsilon_{\nu} \; . \tag{6}$$

b) Optical thickness, absorption coefficients, source function

• optical thickness:

$$d\tau_{\nu} = -\kappa_{\nu} ds \quad ; \quad \tau_1 - \tau_2 = -\int_2^1 \kappa ds \tag{7}$$

• absorption coefficients:

1) from continuous atomic transitions (bound-free, freefree), slowly varying

2) from transitions between discrete atomic energy levels (bound-bound), broadened by thermal and turbulent motions (Doppler effect), by radiative and collisional damping

• source function:

$$S_{\nu} = \frac{\varepsilon_{\nu}}{\kappa_{\nu}} \quad ; \quad \text{in LTE} \quad S_{\nu} \equiv B_{\nu}(\mathbf{T}) = \left(\frac{2h\nu^3}{c^2}\right) \frac{1}{\exp[h\nu/(k\mathbf{T})] - 1} \tag{8}$$

c) Concept of Local Thermodynamic Equilibrium – LTE

atomic level populations according to Boltzmann-Saha statistics with local temperature (from Maxwellian distribution of electron velocities)

$$\Rightarrow \quad \frac{\varepsilon_{\nu}}{\kappa_{\nu}} = B_{\nu}(\mathbf{T}) \tag{9}$$

not much dependent on ν , "constant" across any spectral line. We have to check the LTE concept.

d) Formal solution

$$I(\tau_2) = I(\tau_1)e^{-(\tau_1 - \tau_2)} + \int_{\tau_2}^{\tau_1} Se^{-(\tau' - \tau_2)} \mathrm{d}\tau'$$
(10)

or: $I(\tau_2) =$ (intensity irradiated at point 1, i.e. τ_1) × $e^{-(\tau_1 - \tau_2)}$ + integral over (intensity emitted underway at τ') × $e^{-(\tau' - \tau_2)}$

e) Plane parallel atmosphere

define $d\tau_{\nu} \equiv -\kappa_{\nu} dz$, $ds = dz / \cos \theta$, $\cos \theta \equiv \mu$, $\tau_{\nu} = -\int_{\infty}^{z} \kappa_{\nu} dz$ \Rightarrow emergent intensity

$$I_{\nu}(\tau_{\nu}=0,\mu) = \int_{0}^{\infty} S_{\nu}(\tau_{\nu}') e^{-\tau_{\nu}'/\mu} \mathrm{d}\tau_{\nu}'/\mu \qquad (11)$$

f) Eddington-Barbier approximation

Taylor expansion of $S(\tau')$ about τ^* : $S(\tau') = S(\tau^*) + (\tau' - \tau^*) \frac{\mathrm{d}S}{\mathrm{d}\tau}|_{\tau^*} + \dots$ \Rightarrow at $\tau^* = \mu = \cos \theta$ (Eq. 11)

$$I_{\nu}(\tau_{\nu} = 0, \mu) \approx S_{\nu}(\tau_{\nu} = \mu),$$
 (12)

i.e. observed intensity \approx source function at $\tau_{\nu} = \cos \theta$ (not at $\sin \theta$)

Д

g) Formation of Fraunhofer lines, schematically

mapping of source function (e.g. $B_{\nu}(\mathbf{T})$) onto emergent intensities via absorption coefficients (disk center, $I_{\lambda}(0, \mu = 1) \approx S_{\lambda}(\tau_{\lambda} = 1)$)

intensity I_{λ} depends on "height of formation", thus on amount of absorption, mumber density of absorbing particles, abundance, level populations, atomic absroption coefficient

2.3 non-Local Thermodynamic Equilibrium – non-LTE

calculate source function for very specific case:

only atoms of one species, possessing just two atomic levels,

+ electrons for collisions,

electrons have Maxwellian velocity distribution (defines temperature T)

 \Rightarrow

a) Absorption

on ds absorbed specific intensity I_{ν} = probability q_{ν} that an atom absorbs a photon × number density of absorbing atoms n_l × intensity I_{ν} × ds

$$\kappa_{\nu}I_{\nu}\mathrm{d}s = q_{\nu}n_{l}I_{\nu}\mathrm{d}s$$

Einstein: $q_{\nu} = B_{lu} \frac{h\nu_{lu}}{4\pi} \phi_{\nu}$ where $\phi_{\nu} =$ frequency

where $\phi_{\nu} = \text{Gauss-}$, Voigt profile, frequency dependence is separated out and $\int_{\text{line}} \phi_{\nu} d\nu = 1$

classically: harmonic damped oscillator

$$\int_{\text{line}} q_{\nu} \mathrm{d}\nu = \frac{\pi e^2}{m_e c} f_{lu} \tag{13}$$

b) Spontaneous emission

$$\varepsilon_{\nu,\mathrm{sp}} = n_u A_{ul} \frac{h\nu_{lu}}{4\pi} \phi_l$$

c) Stimulated emission

 $\varepsilon_{\nu,\rm st} = n_u B_{ul} \frac{h\nu_{lu}}{4\pi} \phi_\nu I_\nu$

relations: $A_{ul} = \frac{2h\nu^3}{c^2}B_{ul}$, $g_l B_{lu} = g_u B_{ul}$

d) Rate equations

Boltzmann equation for level i:

$$\frac{\partial n_i}{\partial t} + \nabla \cdot (n_i \vec{v}_i) = (production - destruction) \ per \ unit \ time \tag{14}$$

assume that production and destruction fast processes (atomic transitions) \Rightarrow (production - destruction) ≈ 0 or

$$n_l(B_{lu}\bar{J} + C_{lu}) = n_u(A_{ul} + B_{ul}\bar{J} + C_{ul})$$
(15)

with angle and frequency averaged intensities

$$J_{\nu} = \int I_{\nu} d\Omega / (4\pi) \,, \text{ and } \bar{J} = \int_{\text{line}} J_{\nu} \phi_{\nu} d\nu \tag{16}$$

e) Collisions

collisions with electrons dominate those with other particles (density n_e , they are fast, Maxwellian velocity)

$$C_{lu} = n_e \Omega_{lu,c}(\mathbf{T}) \quad \text{and} \quad C_{ul} = n_e \Omega_{ul,c}(\mathbf{T})$$

$$\tag{17}$$

Gedankenexperiment: in thermal equilibrium (n_l^*, n_u^*) , Boltzmann populations

$$\Rightarrow \frac{n_u^*}{n_l^*} = \frac{g_u}{g_l} e^{-h\nu/(k\mathrm{T})} \tag{18}$$

When collicions with thermal electrons dominate over radiative transitions

$$\Rightarrow \text{Boltzmann level populations} \Rightarrow \frac{C_{lu}}{C_{ul}} = \frac{g_u}{g_l} e^{-h\nu/(k\text{T})}$$
(19)

otherwise, from rate equation

$$\frac{n_l g_l}{n_u g_u} = \frac{A_{ul} + B_{ul} J + C_{ul}}{B_{ul} \bar{J} + C_{ul} \exp[-h\nu/(kT)]}$$
(20)

population densities depend on collisions and on radiation field

f) absorption coefficient, source function

$$\kappa_{\nu} = n_l B_{lu} \frac{h\nu_{lu}}{4\pi} \left[1 - \frac{n_u g_l}{n_l g_u}\right] \phi_{\nu} \tag{21}$$

define: $\varepsilon' \equiv \frac{C_{ul}}{A_{ul}} (1 - \exp[-h\nu/(kT)]); \quad \varepsilon \equiv \frac{\varepsilon'}{1+\varepsilon'}$ $\Rightarrow \quad S_{lu} = (1 - \varepsilon)\bar{J} + \varepsilon B_{\nu}(T)$ (22)

 $S_{lu} \approx \text{independent of } \nu \text{ across spectral line, like } B_{\nu}(T)$ $S_{lu} = B_{\nu}(T) \text{ (or LTE) for } \varepsilon \to 1, \ \varepsilon' \to \infty, \ C_{ul} \gg A_{ul} \text{ or for } \bar{J} = B_{\nu}(T)$

g) estimate ε'

 $\begin{array}{ll} (\text{approximate } \exp[-h\nu/(k\mathrm{T})] \ll 1, \, \text{Wien limit}) \\ A_{ul} \approx 10^8 \; \mathrm{s}^{-1}, \, (\text{atomic level life time for resonant lines } t = 1/A_{ul} \approx 10^{-8} \; \mathrm{s}) \\ n_e \approx 10^9 \dots 10^{14} \; \mathrm{per \ cm^3 \ in \ } \odot \; \mathrm{atmosphere} \\ \Omega_{ul} \approx \sigma_{ul} \bar{v}_e \,, \sigma_{ul} \approx 10^{-15} \, \mathrm{cm^2} \,, \, \, \bar{v}_e \approx 4 \times 10^7 \mathrm{cm \ s^{-1}} \\ \Rightarrow \quad \varepsilon' = 4 \times 10^{-2} \dots 4 \times 10^{-7} \ll 1; \quad \varepsilon \approx \varepsilon' \end{array}$

h) solution of transfer equation

for simplicity with $B_{\nu}(T)$, ε , ϕ_{ν} all independent of height (of optical depth)

Figure 2: Run of $S_{lu}/B_{\nu}(T)$ with optical depth (at line center) in an atmosphere with constant properties. Solid curves: Gaussian apportion profiles; dash-dotted: $\varepsilon = 10^{-4}$ and normalized Voigt profile with damping constant a = 0.01.

- $S_{lu} \ll B_{\nu}(T)$ near surface, photons escape from deep layers, $\Rightarrow \quad \bar{J} \ll B_{\nu}(T)$
- We would see an absorption line although T is constant with depth (see above, formation of Fraunhofer lines, mapping of S onto emergent intensity $I_{\lambda}(0,\mu)$)
- temperature rise and "self-reversal"

Normally, atoms, molecules, and ions have many energy levels/transitions
 ⇒ complicated, but possible to calculate (let the computer do it)

2.4 Polarized light

- polarized light is produced by scattering and in the presence of magnetic fields
- described by the *Stokes* vector $\vec{I}_{\nu} = (I_{\nu}, Q_{\nu}, U_{\nu}, V_{\nu})^{\mathrm{T}}$ with

 $I_{\nu} \equiv \text{total intensity}$

 $Q_{\nu}, U_{\nu} \equiv$ contribution of linearly polarized light in two independent orientations

 $V_{\nu} \equiv$ contribution of circularly polarized light

• transfer of *Stokes* vector

$$\frac{\mathrm{d}\vec{I}}{\mathrm{d}s} = -\mathbf{K}(\vec{I} - \vec{S}) \quad ; \quad \vec{S} = (S, 0, 0, 0)^{\mathrm{T}} = \text{ source function}$$
(23)

infromation on magnetic field (e.g. Zeeman splitting) is contained in absorption matrix ${\bf K}$

2.5 Atmospheric model

a) Assumptions

- hydrostatic equilibrium: $dp = -\rho g dz$
- plane parallel, gravitationally stratified
- micro-, macro-turbulence (small-scale random motions, for broadening of lines)
- static: $\frac{\partial}{\partial t} = 0$; $\vec{v} = 0$; $\Rightarrow \quad \frac{\partial n_i}{\partial t} + \nabla \cdot (n_i \vec{v}) = 0$
- kinetic equilibrium: electrons possess Maxwellian velocity distribution
- equation of state: $p = n_{\text{tot}}kT$
- charge conservation: $n_e = n_p + n_{\text{He}^+} + n_{\text{He}^{++}} + n_{\text{Fe}^+} + \dots$
- chemical composition given: abundances $\Rightarrow \rho$, absorption coefficient, electron density
- atomic parameters known: f_{lu} , Ω_{lu} , ...

b) Model construction

- adopt model of temperature T(z)(zero level z = 0 arbitrary, usually shifted to $\tau_{c,5000A} = 1$ at end of modelling)
- solve simultaneously/iteratively:
 - transfer equations for important lines and continua:
 - H, other elements important as electron donors (Fe, Mg, Si, ...)
 - rate equations for the according levels and continua
 - obey hydrostatic equilibrium and charge conservation

- $\Rightarrow \text{ mass density } \rho(z), \text{ electron density } n_e(z),$ absorption and emission coefficients $\kappa_{\nu}(z), \ \varepsilon_{\nu}(z)$
- calculate emergent intensities and compare with observations
- modify T(z), if necessary (disagreement between data and calculated intensities)
- otherwise \Rightarrow MODEL

c) Example

Vernazza, Avrett, & Loeser (1981, [23]) \Rightarrow VAL A-F, VAL C

Figure 3: Run of temperature with height in the solar atmosphere. The formation layers of various spectral features are indicated. From Vernazza, Avrett, & Loeser (1981, [23]).

3 A closer view – the dynamic atmosphere

- The Sun shows many inhomogeneities, known since about 150 years
- inhomogeneities are time dependent dynamic
- temperature rise to high coronal values only possible with non-radiative energy supply
- most energy is needed for chromospheric heating
- dynamics: convection waves dynamic magnetic fields
- more descriptive than theoretical presentation (see references and other lectures)

Figure 4: Homogeneous temperature structure of the solar atmosphere (upper part, [23]) and sketch of inhomogeneities with dynamic features as granules, waves, spicules, and magnetic fields.

3.1 Convection – granulation

a) Convection

- down to approx. 200 000 km the solar interior is convective: high opacity and low c_p/c_v (ionization of H \Rightarrow many degrees of freedom) favour convection, "Schwarzschild criterion"
- convection very efficient in energy tranport
- photosphere: $\tau_{\rm cont} \approx 1$, energy escapes to Universe by radiation
- photosphere convectively stable, boundary layer to convective interior

b) Granulation (- supergranulation)

- top of convection zone
- size $\bar{l} \approx 1000 \,\mathrm{km} \gg \mathrm{scale}$ height (Muller 1999 [11]), life time $\approx 10 \,\mathrm{min}$
- velocities: bright upflows \rightarrow radiative cooling \rightarrow cool downflows, $v_{\rm max} \approx 2 \,\rm km \, s^{-1}$ (vertical and horizontal)
- intensity fluctuations and velocities highly correlated (down to resolution limit $\approx 300 \text{ km}$)

Figure 5: Intensity and velocity fluctuations of granulation ([8]).

c) Turbulence

- Rayleigh number $Ra \approx 10^{11} \Rightarrow$ motion expected highly turbulent
- kinetic enegy spectrum $\propto k^{-5/3}$, on which scale? (see Muller 1999 [11], Krieg et al. 2000 [8])

3.2 Waves

a) Atmospheric waves

Figure 6: Regimes in the k_h - ω plane with predominantly acoustic wave and predominantly gravity wave properties, separated by the regime of evanescent waves. Dotted line: Lamb waves; dashed: divergence-free or surface gravity waves; T₀ = 6 000 K, $c_p/c_v = 5/3$, molar mass $\mu = 1.4$.

- assume gravitationally stratified atmosphere
- assume constant temperature, $c_p/c_v = 5/3 = \text{constant}$
- conservation of mass, momentum, and energy (assume adiabatic motion, i.e. no energy exchange)
- linearize \Rightarrow dispersion relation $k_h = 2\pi/\Lambda, \Lambda =$ horizontal wavelength (parallel to "surface") $\omega = 2\pi/P, P =$ period
- \Rightarrow regions of wave propagation and of evanescent waves

Figure 7: k_h - ω diagram, power spectrum of intensity fluctuations obtained from a time series of CaIIK filtergrams (from the chromosphere).

b) Observations

- observations are dominated by evanescent waves: "5-min oscillations" = acoustic waves in solar interior (resonator), evanescent in atmosphere
- gravity waves do exist, very likely (e.g. Al et al [1]), generated by granular up- and downflows
- acoustic waves:
- $\begin{array}{l} \underline{\mathrm{important}} \text{ (see e.g. Ulmschneider et al. 1991 [21], Ulmschneider et al. 2001 [22]),} \\ \overline{\mathrm{expected: generated by turbulence}} \rightarrow \mathrm{noise} (\mathrm{Lighthill mechanism}) \\ \underline{\mathrm{small-scale}} \rightarrow \underline{\mathrm{high spatial resolution needed}} \\ \mathrm{periods: 10 s \dots 50 s \dots 100 s} \\ \mathrm{snag: low signal, hard to detect} \end{array}$

(see also work of Maren Wunnenberg, future work of Aleksandra Andjic)

3.3 Magnetic fields

(see also lecture by M. Schüssler)

a) In general

- signature by Zeeman effect: line splitting, polarization
- magnetic fields often related to conspicuous intensities: sunspots, pores, bright points
- essential for coronal dynamics and dynamics of heliospheric plasma
- magnetic fields are a very important ingredient to solar/stellar atmospheric dynamics many dedicated conferences (e.g. Sigwarth 2001 [19]), dedicated telescopes

b) Small-scale magnetic fields

- small-scale: $300 \text{ km} \dots 100 \text{ km} \dots 10 \text{ km}$
- related:

magnetic network - chromospheric network - supergranular flows

bundles of flux tubes, $B \approx 1500$ Gauss, almost empty because magnetic pressure balances external gas pressure

- Intra-Network fields: ubiquitous, more magnetic flux through solar surface than the flux in sunspots
- MISMA hypothesis (MIcro-Structured Magnetic Atmosphere) (e.g. Sánchez Almeida & Lites 2000 [17])

 $B \approx 1500$ gauss inneter ≈ 10 km (!)

(work of Itahiza Domínguez Cerdeña)

c) Magnetic fields and waves

• important for chromospheric and coronal heating excited by granular flows

• magnetoacoustic gravity waves \Rightarrow multitude of modes, e.g.

torsional

$$c_{\rm A} = B/(4\pi\rho)^{1/2}$$

sausage $c_t = c_s c_A / (c_s^2 + c_A^2)^{1/2}$

kink cutoff for low frequencies

d) Topological complexity

footpoints are pushed around

- \rightarrow "braiding" of magnetic fields
- \rightarrow reordering/reconnection
- \rightarrow release of magnetic energy

(work of Katja Janßen and Oleg Okunev)

3.4 Chromosphere

Name stems from eclipses (Lockyer and Frankland 1869): shortly before/after totality vivid red color: emission in H α (Secchi 1877 [18]) layers above photosphere, very inhomogeneous, very dynamic

a) Quiet chromosphere

- spicules (Beckers 1972 [2], Wilhelm 2000 [24]): $v \approx 30 \,\mathrm{km \, s^{-1}}$ into corona 100 times more mass than taken away by solar wind
- chromospheric network: diameter $\approx 30\,000$ km, life time ≈ 24 h consists of boundaries, bright in Ca K line, co-spatial with magnetic fields, cospatial with convective flow: supergranulation
- cell interior: tiny, quasy-periodic bright points, few times repetitive, 120 s ... 250 s

Figure 8: Spicules at the solar limb, hand drawings by Secchi (1877 [18]).

b) Problem of heating

• <u>short-period waves</u> generated by turbulent convection wave spectrum with periods: $10 \, \text{s} \dots 50 \, \text{s} \dots 100 \, \text{s}$ waves travel into higher layers acoustic energy flux: $F_{\text{ac}} = \rho v^2 c_s = const$ $c_s \approx const, \rho \approx \rho_0 e^{-z/H} \Rightarrow v \approx v_0 e^{z/(2H)}$ \Rightarrow acoustic shocks \Rightarrow deposit of energy

- numerical simulations (Carlsson & Stein 1997 [5], Rammacher 2002 [13]):

 shock trains develop from short period waves, periods ≈ 200 s
 to be identified with bright points?
 no temperature increase on average
- way out: <u>average</u> temperature deduced, <u>not measured</u>, from <u>average</u> observations
 ⇒ reproduce (average) observations by numeric simulation of dynamics
 then deduce from modelled observations average temperature

Figure 9: Call K filtergram from the quiet chromosphere at disk center.

c) Network boundary – active chromosphere (plages)

- increasing emission increasing involvement of magnetic fields
- more and more braiding/reconnection
- acoustic wave emission along magnetic flux tubes: much more efficient than in free turbulence

free turb.: quadrupole emission

flux tube: dipole emission

• problem generally: to observe the dynamics, waves, reconnection!

4 Conclusions

- Solar / stellar photosphere and chromosphere are essential parts of the Sun / of (late type) stars.
- Photosphere and chromosphere are very dynamic.
- We see a huge plasma laboratory at work, we may learn much physics.
- Finestructure and dynamics determine outer layers: corona, solar wind, heliosphere.
- Thus, the processes in photosphere and chromosphere are important for Earth.

- There are means to learn about the stucture and the processes.
- It remains so much one would like to understand!

References

- Al, N., Bendlin, C., & Kneer, F. 1998, Two-dimensional spectroscopic observations of chromospheric oscillations, Astron. Astrophys. 336, 743
- [2] Beckers, J.M. 1972, Solar Spicules, Ann. Rev. Astron. Astrophys. 10, 73
- [3] Bray, R.J. & Loughhead, R.E. 1974, The Solar Chromosphere, Chapman and Hall, London
- [4] Bray, R.J., Loughhead, R.E., & Durrant, C.J. 1984, The Solar Granulation, Cambridge University Press
- [5] Carlsson, M. & Stein, R.F. 1997, Formation of Solar Calcium H and K Bright Grains, Astrophys. J. 481, 500
- [6] Chandrasekhar, S. 1960, Radiative Transfer, Dover, pp. 24 35
- [7] Kneer, F. & von Uexküll, M. 1999, Diagnostics and Dynamics of the Solar Chromosphere, in A. Hanslmeier & M. Messerotti (eds.) "Motions in the Solar Atmosphere", Kluwer, p. 99
- [8] Krieg, J., Kneer, F., Koschinsky, M., & Ritter, C. 2000, Granular velocities of the Sun from speckle interferometry, Astron. Astrophys. 360, 1157
- [9] Landi Degl'Innocenti, E. 1992, Magnetic Field Measurements, in F. Sánchez, M. Collados, & M. Vázquez (eds.) "Solar Observations: Techniques and Interpretation", Cambridge University Press, p. 73
- [10] Mihalas, D. 1978, Stellar Atmospheres, Freeman, San Francisco
- [11] Muller, R. 1999, The Solar Granulation, in A. Hanslmeier & M. Messerotti (eds.) "Motions in the Solar Atmosphere", Kluwer, p. 35
- [12] Narain, U., Ulmschneider, P. 1996, Chromospheric and Coronal Heating Mechanisms II, Space Sci. Rev. 75, 45
- [13] Rammacher, W. 2002, private communication
- [14] Rosenthal, C.S., Bogdan, T.J., Carlsson, M., Dorch, S.B.F., Hansteen, V., McIntosh, S.W., McMurry, A., Nordlund, Å., & Stein, R. F. 2002, Waves in the Magnetized Solar Atmosphere. I. Basic Processes and Internetwork Oscillations, Astrophys. J. 564, 58

- [15] Rutten, R.J. 2002, Lecture Notes: Radiative Transfer in Stellar Atmospheres. http://www.phys.uu.nl/~rutten
- [16] Rutten, R.J. & Uitenbroek, H. 1991, CA II H(2v) and K(2v) cell grains, Solar Phys. 134, 15
- [17] Sánchez Almeida, J. & Lites, B. 2000, Physical Properties of the Solar Magnetic Photosphere under the MISMA Hypothesis. II. Network and Internetwork Fields at the Disk Center, Astrophys. J. 532, 121
- [18] Secchi, P.A., S.J. 1877, Le Soleil, Vol. 2, 2nd edn., Gauthier-Villars, Paris
- [19] Sigwarth, M. (ed.) 2001, Advanced Solar Polarimetry Theory, Observation, and Instrumentation, 20th NSO/Sacramento Peak Summer Workshop, PASP Conf. Ser. 113
- [20] Stix, M. 1989 The Sun An Introduction, Springer, Heidelberg
- [21] Ulmschneider, P., Priest, E.R., & Rosner, R. (eds.) 1991, Chromospheric and Coronal Heating Mechanisms, Proc. Internat. Conf., Heidelberg, 5–8 June 1990, Springer, Heidelberg
- [22] Ulmschneider, P., Fawzy, D., Musielak, Z.E., & Stepien, K. 2001, Wave Heating and Range of Stellar Activity in Late-Type Dwarfs, Astrophys. J. 559, L167
- [23] Vernazza, J.E., Avrett, E.H., & Loeser, R. 1981, Structure of the Solar Chromosphere.
 III. Models of the EUV Brightness Componenents of the Quiet Sun, Astrophys. J. Suppl., 45, 635
- [24] Wilhelm, K. 2000, Solar spicules and macrospicules observed by SUMER, Astron. Astrophys. 360, 351