IMPRS Intro Course Germerode, 19.2.2002

Solar Convection & Magnetism

Manfred Schüssler Max-Planck-Institut für Aeronomie Katlenburg-Lindau

Convection & magnetism: closely related

The solar convection zone

200 Mm thick layer in turbulent motion

Velocities range from 100 m/s (bottom) to 10 km/s (top)

Energy flux nearly completely transported by convective motion

What is convection?

Flow driven by thermal buoyancy

Convective instability

→ Viewgraphs...

WHAT IS CONVECTION ?

- Transport of energy (internal, kinetic, latent, ...) by macroscopic motions (flows) driven by dynamical instability of a static equilibrium
- ... driven by an entropy gradient in thermodynamically open system
- Examples : air above a "radiator", earth's troposphere, stellar convection zones
- Convective motions normally are *overturning* (\leftrightarrow oscillatory)
- treat solar atmospheric flow structures as "convective" in spite of stable stratification of observable layers ("overshoot")
- "Sun as a Lab": Concentrate on solar convection zone (\rightarrow huge Reynolds number $Re = ul/\nu$, small Prandtl number $\sigma = \nu/\kappa$, strong stratification, pressure fluctuations important \rightarrow laboratory convection results inapplicable)
- *Not* discussed here, but important : Effects of/on rotation, oscillations, heating of upper atmosphere

CONVECTION IN ASTROPHYSICS

 \rightarrow everybody's darling/problem

- Basic *energy transport* mechanism, besides radiation
- Leads to strong *structuring* of late type star surface regions $(\rightarrow 1D\text{-models inadequate})$ which affects the determination of atmospheric structure and abundances of elements
- Generates large-scale *magnetic fields* (dynamo) and small-scale magnetic structures (*flux tubes*)
- Provides mechanical energy for *heating* of chromospheres and coronae, drives stellar winds/mass loss
- Drives global *oscillations*
- Generates differential rotation
- Causes mixing and disturbs stellar evolution
- Is everywhere:
 - \Rightarrow envelopes of late-type stars
 - \Rightarrow cores of early-type stars
 - \Rightarrow accretion disks
 - \Rightarrow planetary interiors and atmospheres
- Solar atmosphere is a unique testing ground for understanding stellar convection : Processes can be observed on their natural time scales and length scales

3. CONVECTIVE INSTABILITY

du +0 COMPOSITION CHANGES (STELLAR INTERIORS) Invitation (STELLAR ENVELOPES)

-> CONSIDER SEPERATELY

3/4

SCHWARZSCHILD CRITERION premere $\frac{1}{H_p} = -\frac{1}{p} \frac{dp}{dr} \quad beight$ $\frac{dT}{dr} < \left(\frac{dT}{dr}\right)_{od}$ RewRITE: $\frac{dT}{dv} = \frac{T}{p} \frac{dluT}{dlup} \cdot \frac{dp}{dv} = -\frac{T}{H_p} \nabla$ > ONSTABILITY FOR P > Vad ideal gas, no ionization : $D_{ad} = \frac{\gamma^{-1}}{\gamma} = 0.4 (\gamma = \frac{5}{3})$ RECATION TO ENTROPY GRADIENT TdS = pdV + dEAssume ribEAL GAS dE = CrdT, p=RST + use $(dS)_{ad} = 0$ R=G-CV ⇒ ... ExERCISE ... $\frac{dS}{dr} = \frac{C_P}{T} \left[\frac{dT}{dr} - \left(\frac{dT}{dr} \right)_{ad} \right] < 0 \text{ for inst.}$ -> CONVECTIVE INSTABILITY ENTROPY DECREASES OUTWARD

[ENTROPY GINK : STELLAR BURFACE]

5. OVERSHOOT

Convective motions extend into stable layers above and below the superadiabatically stratified region

- Top (photosphere) : pressure gradients, radiative heating
- Bottom (radiative core) : penetration
- \Rightarrow Effective extension of the convection zone increases
- \rightarrow required by <u>helioseismology</u>
- \rightarrow affects Li burning $(T > 2.5 \cdot 10^6 \text{ K})$
- \rightarrow facilitates magnetic flux storage

4. MIXING LENGTH DESCRIPTION

CONVECTION AS MIXTURE OF BLOBS WHICH MOVE VERTICALLY OVER A DISTANCE & (THE MIXING LENGTH) AND DISSOLVE (PRENDTL (1925), BIERMANN (1948), SPIK (1950), BEHM-VITENSE (1953)]

4/1

TYPICALLY
$$l = \alpha \cdot H_p$$
, $\alpha = O(A)$

<u>Aim</u>: CALCULATE ENERGY FULX AND MEAN QUANTITIES (V; S; ST, & of RUDES, ...)

<u>TEMPERATURE</u> DIFFERENCE : [ignore factors of O(1)] $\Delta T = \left[\left(\frac{dT}{dr} \right)_{i} - \frac{dT}{dr} \right] \cdot S_{r} = (\nabla - \nabla_{i}) T \frac{S_{r}}{H_{P}} = (\nabla - \nabla_{i}) T d$

CONVECTIVE FLUX : [ERGS CH - S-]

$$F_c = \Delta T \cdot g_{cp} \cdot v = g_{cp} \cdot v T (v - v_i) \alpha$$

VELOCITY : [ACCELERATION BY BUOYANCY]

$$\ddot{S}_r = -g \Delta g / q = g \chi_P \Delta T / T = g \chi_P (\nabla - \nabla_i) \frac{S_r}{H_P}$$

$$\Rightarrow (\text{BLOBE HONDRENGOUS}) \quad \hat{S}_{r}^{2} = \frac{g \chi_{p}}{H_{p}} (\nabla - \nabla_{i}) S_{r}^{2}$$

$$\Rightarrow \quad v = \left[\frac{g \chi_{p}}{H_{p}} (\nabla - \nabla_{i})\right]^{\frac{4}{2}} L$$

CONVECTIVE FLUX :

ENERGY FLUX :

$$F_{c} = g C_{p} T \left(g X_{p} H_{p} \right)^{1/2} \chi^{2} \left(\nabla - \nabla_{i} \right)^{3/2}$$

 $F_{RAD} + F_{C} = L_{O}/4\pi r^{2}$

- $\nabla_i = \nabla_a \implies \text{READY}$, $\nabla(\neg)$ Detertimed
- . Vi > Va DUE TO RADIATION -> ... -> CUBIC EQUATION

4/2

· TYPICAL VALUES IN DEEP CONVECTION ZONE :

 $\nabla - \nabla_a \simeq \Lambda o^{-5} << 1$ $\Delta T \simeq 2 K << T$

- v = loom/s << cs
- > CONVECTION is VERY "EFFICIENT"
- $\frac{ANE}{\nabla \nabla_a} \approx 0.6$ $\Delta T \approx 2000 \text{ K}$ $\nabla = 2 \text{ Km/s}$
 - * ASSUMPTIONS BECOME INVALID
- MIXING LENGTH DESCRIPTION
 ≈ TURBULENT <u>DIFFUSION</u> OF ENTROPY LITH 7~ U.L
 IOVIDATION (H, He) REDUCES Val (LATENT HEAT)
 - > DESTABLY ANG
 - DRAWBACKS OF M.L.D.
 - · LOCAL (NO OVERSHOOT)
 - · ADJUSTABLE PARAMETERS (NO PREDICTIONS)
 - · EFFECTIVELY INCOMPRESSIBLE, NEGLECTS PRESSURE PULCTUATIONS, STATIFICATION

(BOUSSINESQ - APPROX.)

(INAPPLICABLE TO OBSERVABLE SURFACE FLOUS)

3/3 VRAD, VAD, V IN A STANDARD HIXING LENGTH MODEL OF THE SOLAR CONVECTION BONE

Laboratory results and numerical experiments for Rayleigh-Bénard convection with high Ra

lab: Ra up to 10^{17} (Helium gas at ~5 K) Ra > 2.5 10^5 : turbulence, Nu ~ Ra^{1/3} $Ra > 4 \ 10^7$: "hard turbulence", Nu ~ $Ra^{2/7}$ coherent threads/plumes/thermals of buoyant fluid connect top & bottom flows driven by threads, passive non-buoyant fluid between non-local energy transport, global circulation with rotation: vortex interaction of plumes, coalescence

Solar convection strongly different from Rayleigh-Bénard: boundary structure, stratification, compressibility...

Filamentary flows in Rayleigh-Bénard convection

Kerr 1996

Time evolution of filamentary flows in Rayleigh-Bénard convection

Kerr 1996

SOLAR CONVECTION : OBSERVATIONAL APPROACHES

Continuum images, filtergrams

- \Rightarrow spatial structure : bright granules & interconnected network of dark intergranular lanes
- ⇒ temporal evolution : formation, dissolution, break-up of granules, "exploding granules"

Spectrograms

- \Rightarrow line-of-sight velocities via Doppler effect ("line wiggles")
- \Rightarrow upflow in granules, downflow in intergranular lanes
- \Rightarrow velocity distributions & gradients (line asymmetries)
- \Rightarrow supergranulation (Dopplergrams)

Proper motions of "tracers"

- \Rightarrow horizontal velocities
- \Rightarrow mesogranulation by "local correlation tracking"

Granulation: Solar surface convection

Solar granulation

Granulation und laboratory convection

Granulation as a convective phenomenon

Supergranulation

Supergranulation and magnetic field: the Ca⁺ network

Granulation, sunspots, & small-scale magnetic field

"Mesogranulation" ?

6. Numerical Simulations

Solar convection, in particular near the surface, is unsufficiently described by concepts like mixing length, linear superposition of eigenmodes, Boussinesq approximation, etc. because of

- \rightarrow strong density stratification,
- \rightarrow nonlinearity of the flows,
- \rightarrow non-stationarity,
- \rightarrow compressibility effects, shocks.
- \Rightarrow Numerical simulations

Equations and problems

Continuity:

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot (\rho \, \mathbf{u})$$

 \Rightarrow compressibility, strong stratification

Equation of motion:

$$\rho\left(\frac{\partial\,\mathbf{u}}{\partial t}+\mathbf{u}\cdot\nabla\,\mathbf{u}\right)=-\nabla p+\rho\,\mathbf{g}+\frac{1}{4\pi}\left(\nabla\times\,\mathbf{B}\right)\times\mathbf{B}+\mathbf{f}_{visc}$$

- $\Rightarrow Re = u \cdot l/\nu \gg 1 \rightarrow \text{small scales} \rightarrow \text{"sub-grid"}$ transport coefficients (viscosity, thermal & magnetic diffusion)
- \Rightarrow steep gradients, concentrated flows

Energy equation:

$$\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T = -\frac{T}{\chi_p} (\gamma - 1) \nabla \cdot \mathbf{u} - \frac{\gamma}{\rho c_p} \nabla \cdot (\mathbf{F}_{rad} + \mathbf{F}_{visc} + \mathbf{F}_{mag} + \mathbf{F}_{turb})$$

- \Rightarrow partial ionization effects \rightarrow thermodynamical quantities must be determined self-consistently
- $\Rightarrow \quad \text{surface layers} \quad \rightarrow \quad \text{radiation has to be treated accurately,} \\ \text{radiative energy loss to space drives the whole flow} \quad \rightarrow \\ \text{solve transfer equation, preferably non-grey (opacity distribution functions)} \\ \end{cases}$

Magnetic induction equation

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{B}) - \nabla \times (\eta_m \nabla \times \mathbf{B})$$

- \Rightarrow steep gradients, concentrated fields & currents
- \Rightarrow "sub-grid" magnetic diffusivity

in addition...

- \rightarrow equation of state,
- \rightarrow equations for ionization equilibrium,
- \rightarrow equations for thermodynamic quantities $(\chi_p, \gamma, c_p, ...)$
- \rightarrow determination of opacities,
- \rightarrow integration of radiative transfer equation along many lines of sight for many angles, calculation of mean intensity and radiative flux
- \rightarrow determination of diagnostic information (mean quantities, correlations, single and average spectral line profiles, continuum intensity maps...)
- \rightarrow visualization of flow properties and time evolution

• Boundary problems

Real boundaries:

- \rightarrow top : $\tau = 1$, radiation, steep *T*-gradient
- \rightarrow bottom : overshoot, thermal boundary layer

Artificial boundaries:

 \rightarrow transmitting, non-reflecting, open

Initial conditions:

 \rightarrow simulation time > thermal relaxation time

• Approaches

Numerical experiments

→ simplified physics, consider general properties without attempting to model the Sun → Graham (1975, 1977), Hurlburt et al, (1984, 1986), Chan & Sofia (1986, 1987), Hossain & Mullan (1990), Malagoli et al. (1990), Cattaneo et al. (1991)

<u>Global convection</u>

→ simulate bulk of solar convection zone, neglect surface regions, trade resolution for total size → Gilman & Glatzmaier (1981,...)

Surface convection

→ simulate observable solar convection on granular/mesogranular scale → Nordlund (1984,...), Gadun (1986), Stein & Nordlund (1989), Steffen (1989)

• Results : Simulation of convection

- \rightarrow Strong inhomogeneities, steep gradients (temperature, velocity)
- \rightarrow Significant pressure fluctuations, "buoyancy braking"
- \rightarrow Supersonic velocities, shocks
- \rightarrow Asymmetry of up- and downflows, non-local dynamics
 - \Rightarrow strong, narrow downflows \leftrightarrow broad upflows
 - \Rightarrow 3D, turbulent: Coherent pattern of downdrafts, disorganized upflows
 - \Rightarrow topology changes with depth \rightarrow "granulation" is a shallow phenomenon
- \rightarrow Downdrafts play a prominent role:
 - \Rightarrow sites of buoyancy driving
 - \Rightarrow kinetic energy flux
 - \Rightarrow helical motion due to "bathtub effect"
- \rightarrow Other transport processes strongly non-local (magnetic fields, angular momentum...)
- \rightarrow Essential features of observed granulation are reproduced by simulations with radiative transport:
 - \Rightarrow isolated, hot upflows network of cool downflows
 - \Rightarrow timescales, spatial scales, "exploding granules"
 - \Rightarrow average line profiles

-05 ~

ASYMMETRY OF UP- AND LOWNFLOWS

HURLBURT ET AL. (1984) [25 SIMULATION]

LIMULATION OF SUPERSONIC CONVECTION

(STEINER, 1992)

 $\chi = 11$; r = 4; $\sigma = 0.3$; m = 1; g = 1.4 $R = 10^{6} \approx 10^{4} R_{chit}$

base grid 80×20 ; refinement ratio = 2 l_1 : 1 grid; l_2 : 4 grids; l_3 : 9 grids

Computer-simulated convection

- Boussinesq model
- Rayleigh number: 5 10⁵
- 3D, 512×512×97 mesh
- wide box, aspect ratio: 10
- "(meso)granulation"

Cattaneo & Emonet (2001)

Computer-simulated convection

Boussinesq model

- Rayleigh number: 5 10⁵
- 3D, 512×512×97 mesh
- wide box, aspect ratio: 10
- "(meso)granulation"

Cattaneo & Emonet (2001)

Temperature fluctuations

Simulated long-lived convective downflows

Virtual "corks" are carried by the horizontal flow. They accumulate in downflow regions.

'Realistic' solar simulations

- elaborate physics: partial ionization, radiation, compressible, open box, transmitting boundaries, spectral line diagnostics (Stokes profiles)
- + : approximation to solar conditions
- + : direct comparison with observations
- : computational restrictions (box size, resolution)
- : Reynolds numbers much below solar values

→ viewgraphs

Averaged energy fluxes in a simulation of solar convection

Stein & Nordlund, 2000

Simulation and observation

Simulation (original)

Simulation (smoothed)

Observation

Change of downflow topology

down

up

Stein & Nordlund, 1998

Downflow structure: plumes/thermals

Entropy

Distribution of vorticity

Stein & Nordlund, 1998

Penetrating convection/overshoot

Shown is the temperature field for convection penetrating down into a stable fluid layer. The top image shows a side-view through the layer. The bottom image shows a view from above, within the stable region. The dark "holes" are plumes punching down into the stable fluid.

Simulated convection in a solar-like spherical shell Miesch 1998

A "new paradigm" for solar/stellar convection ? (Spruit, 1997)

Old paradigm (mixing-length model): fully developed turbulence with a hierarchy of "eddies" quasi-local, diffusion-like transport flows driven by local entropy gradient New paradigm (lab & numerical experiments): turbulent downdrafts, laminar isentropic upflows flows driven by surface entropy sink (radiative cooling) non-diffusive transport larger scales (meso/supergranulation) driven by compressing and merging downdrafts \rightarrow viewgraph

PARASIGM OLD PHOTOSPHERE V< Vad 0200020 6 95 12 Rod 25 2 , V.s. 0 pp~ 100 m/s AT~ 1K 5 3 3 3 3 3 5 RAX: ATIVE ZONE Prod = P = Vod SURFACE CAYEEN LIDICAR/SAME JEEP CAYERS LERY D'FFERENT NEW PARADiGM Rol. 728 Das Pad Ro. Op \$ 1 Cupls ! U1 ≥ 10 Ku/s 17~ 104 K ENTRAINMENT > ENTROPY Lixing

(SPECULATIVE) PICTURE OF JOLAR CONVECTION : INVERSE CASCADE (SPRUIT ET AL., 1990)

FURNENTARY DOWNDRAFT'S HERRE (DUE TO HOR'Z. FLOWS ON LARGER SCALES,) DR:VEN BY THE ENTROPY DEFICIT OF THE DOWNDRAFTS THEMSELVES)