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Helioseismology
and Internal Rotation

Dieter Schmitt (Katlenburg-Lindau)

Fig� �� The inferred sidereal rotation rate inside the Sun from � months of GONG data�

based on �A� an OLA � � � inversion ���� ���� and �B� an RLS inversion ����� Lighter

shading corresponds to faster rotation� the contour spacing is �� nHz� the highest contour

value being �	� nHz� �Need to revise to discuss instead the meaning of colors�� The

approximate base of the convection zone is indicated by the dashed line at r 
 ���R� The

slightly more jagged appearance of the RLS solution results from a di�erent balance between

resolution and noise in the two inversions� Particularly noticeable is the local maximum in

the rotation rate a little below the surface in the equatorial region� This shear layer appears

to persist at least to midlatitudes�

�� � May �� Dynamics Thompson� Toomre et al�

1. Introduction

• Earth quakes y compressional and shear waves y propa-

gation through interiory information about Earthy seismology

• free oscillations of Earth y analogy to Sun

• Leighton, Noyes & Simon (1960): 5-min oscillation

P ≈ 5 min, v ≈ 1/2 km s−1

spatial coherence ≈ 30 000 km, temporal coherence ≈ 1/2 h



• Ulrich (1970), Noyes & Simon (1971): superposition of many

(∼ 10 Mio) discrete global acoustic oscillations of Sun

individual amplitudes < 20 cm s−1

• Deubner (1975): confirmation by observation

spatial and temporal Fourier analysis, power

khω-diagram, ridges
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• Isaak et al.: discrete oscillations of spatially

unresolved Sun y basis for asteroseismology

• Each wave contains information about the solar interior,

although largely smoothed

appropriate combination of certain modes narrows contribu-

tion range y spatial information y helioseismology

• Physics of waves, approximate theory



2. Observational Constraints

• Spectral lines, Doppler shift y v(r, t)

• Intensity oscillations, solar irradiance variation

• Fourier transformation f (k, ω) =
∫
v(r , t) exp(−ik·r−iωt)drdt

• power p(k,ω) = f f ∗ , k = |k|
• Nyquist theorem, time resolution, ≥ 2 measurements

per period, e.g. every 90 s

• Frequency resolution, T ≥ 2π/∆ω

∆ω/ω ≈ Ω/ω ≈ 10−4, T ≥ 30 days

• Night gaps y side peaks

y south pole, GONG, SOHO

• Spatial resolution, small wave length, large wave number

• Wave number resolution, whole Sun

3. Properties of p-Modes

• Sound and gravity waves or p- and g-modes

• Internal gravity waves 6= gravitational waves

gravitation / buoyancy restoring force

levels inhomogenities on horizontal surfaces

g-modes propagate in convectively stable layers

i.e. in solar interior, evanescent in convection zone

frequencies small< N, N buoyancy or Brunt-Väisälä frequency

periods ≥ 30 min, not yet observed,

thus not used in helioseismology

• Sound waves

pressure gradient restoring force

compression and expansion, longitudinal waves

periods small 3 . . . 12 min, maximum power at 5 min

individual amplitudes small, linear treatment



• Infinite homogenous fluid

– wave equation for pressure perturbation p̈1 − c
2∆p1 = 0

with c2 = γp0/ρ0 = γRT0, c adiabatic sound speed

– plane wave solution p1(r , t) = p̂1 exp i (k · r −ωt)
– angular frequency ω, wave vector k

– dispersion relation ω2 = k2c2 with k2 = |k|2

• Sun: stratification c(r) and spherical geometry

p1(r, θ,φ, t) = p̂1(r) Y ml (θ,φ) exp(−iωt)

• Spherical harmonics Y ml (θ,φ) = P ml (cosθ) exp(imφ),

Legendre functions P ml
degree l = 0,1,2, . . ., order m = −l , . . . ,0, . . . + l
l nodal lines, l − |m| meridional nodal lines,

|m| azimuthal nodal lines

l ,m determine horizontal wave numbers kθ, kφ
discrete numbers: wavelengths must fit on spherical surfaces

Y ml eigenfunctions of horizontal Laplace operator
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latitudinal info for helioseismology

• No rotation y no prescribed pole

m does not occur in dispersion relation, degeneration

2l (l + 1) eigenfunctions have same eigenfrequency ω



• Information on depth

stratification, coefficients of wave equation depend on r

local analysis, p̂1(r) = ρ1/2
0 exp(ikrr)

approximate dispersion relation for ω > N:

ω2 =
(
k2
r + k

2
h

)
c2 +ω2

ac

• Acoustic cut-off: ω > ωac, ωac = c/2H
c, ωac, kh functions of r y kr(r) local wavenumber

k2
r =

ω2 −ω2
ac

c2
−
l (l + 1)

r2

{
> 0 running
< 0 evanescent

r ↘ c↗ kr ↘

In this approximation� therefore� the dynamics of the p modes is solely determined by the
variation of the sound speed with r� These modes are standing acoustic waves� with the
restoring force being dominated by pressure� and this motivates denoting them p modes�
Indeed� equation ������ determining the radial behaviour of the modes can be obtained
very simply from the dispersion relation ������ for a plane sound wave� I write the squared
length jkj� of the wave vector as the sum of a radial and a horizontal component� i�e��
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Here� by equation ������� k�r must be identi�ed with K� and equation ����� is therefore
identical to equation �������

The sequence of approximations used to derive equation ������ corresponds closely to
the approximations made in the analysis of simple sound waves� Thus it is not surprising
that the same dispersion relation is recovered� Nevertheless� it is gratifying to see that the
full oscillation equations reduce to the correct behaviour in this limit�

Figure ���� Propagation of acoustic waves� corresponding to modes with l 	
��� � 	 �mHz �deeply penetrating rays� and l 	 ���� � 	 �mHz �shallowly
penetrating rays�� The lines orthogonal to the former path of propagation
illustrate the wave fronts�

�

• Inner turning point rt where kr = 0, in solar interior ωac� ω

ω2

c2(rt)
=
l (l + 1)

r2
t

or rt =

√
l (l + 1)

ω
c(rt) i.e. function of

l
ω

Figure ���� The location rt �a� of the inner turning point� and the depth
of penetration R � rt �b�� in units of the solar radius R� for p modes in a
standard solar model� The results are shown as functions of degree l� for
three typical frequencies�

From equation ������ it follows that K increases with decreasing �� Thus the order of
the mode increases with decreasing �� or� equivalently� � decreases with increasing order�
It may also be noticed that the frequencies of g modes cannot exceed the maximum Nmax

in the buoyancy frequency in the stellar interior� As shown below �cf� Fig� ���� one does
indeed 	nd an upper limit on numerically computed g
mode frequencies� The approach to
this limit as l gets large was analyzed by Christensen
Dalsgaard ������

��

• Upper reflection point near surface,ωac increases (H decreases)

Rt approx given by ω = ωac(Rt), Rt ≈ r�
• Cavity, constructive interference, discrete spectrum

of standing sound waves



• Overtones, index n

Figure ���� Eigenfunctions for selected p modes in a normal solar model�
with a� l � �� n � ��� � � �����Hz	 b� l � ��� n � �
� � � ��
��Hz	 c�
l � ��� n � ��� � � ����Hz� The arrows mark the asymptotic location of
the turning points rt �cf� equation �������

a solution to the original equations which� if written as an oscillation� has zero frequency
�see also Christensen�Dalsgaard ��
���

Exercise ����

Verify this statement�
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l = 0, n = 23 l = 20, n = 17

l = 60, n = 10

• Individual mode: three indices l ,m, n

• Interpretation of Deubner’s observation, ω(n, l )↔ kh(l )
ridges various n, ω(l ) not resolved N
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Duvall et al. (1988)

south pole, 50 h, resolution ∆l ≈ 3 . . . 5
∆l = 1 needs information from around Sun (l ≈ khr�)



• SOHO data

• Duvall’s law:

π(n + α)
ω

↔ ω
kh

one curve

phase difference ∆Ψ =
∫ r�
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krdr = π(n + α)

α because of evanescent boundaries,
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• Ridges for large l : F ∼ (Id )−1, ω2 ∼ kh
• Frequencies for small l and large n∫ r�
rt

krdr ≈
ω
c̄
r� −

(
l +

1
2

)
π
2
= π(n + α)

y ω ≈
(
n +

l
2
+ α +

1
4

)
πc̄
r�

y ωnl ≈ ωn−1,l+2 and ωnl ≈
1
2

(ωn−1,l+1 +ωn+1,l+1)

4. Direct Methods

• Theoretical model of Sun y theoretical p-modes
y comparison with observation y variation of solar model

• Good theory of p-modes necessary

• Often frequency differences δωnl = ωnl −ωn−1,l+2 compared

• Determination:

– equation of state: electrostatic correction to
perfect gas law

– Z y opacity y T (0)↔ neutrino flux
– Y
– mixing length, depth of convection zone 200 000 km

• Confirmation of standard solar model



5. Inversion: Sound Speed

Duvall′s law
∫ r�
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6. Internal Rotation

• No rotation: ωnlm not dependent on azimuthal

wavenumber my degeneration

• With rotation no degeneration

– assumption for simplicity: rigid rotation

– ωnlm = ωnl0 ±mΩ , m = −l , . . . ,+l
– standing wave = superposition of two identical travelling

waves in positive and negative azimuthal direction

– rotation, Doppler effect, frequency shift and splitting

• ωnlm −ωnl,m−1 = Ω ,
Ω
ωnl0

≈ 5 min
30 d

≈ 10−4

• Observing time T ≥ 2π/Ω ≈ 30 d to resolve Ω
with ≥ 2 measurements per period (Nyquist)

• Duvall and Harvey (1984)

l = 3, n = 19, m = +3,−3

l = 3, n = 19

m = −3

l = 3, n = 19

m = +3

• Side peaks due to night gaps

y south pole, GONG, SOHO

• Frequency splitting weighted average of Ω(r, θ)

∆ωnlm =
∫
Knlm(r, θ)Ω(r, θ)rdrdθ

• Kernel Knlm given, i.e. |ξ|2 of eigenfunction

• n of little influence, l determines contribution in depth,

m in latitude



• Various methods to extract Ω, here optimal kernels

(Backus & Gilbert, 1970):∑
i

ai(r0)Ki(r ) = δ(r − r0) , combination of kernels to δ functions

∑
i

ai(r0)∆ωi =
∫
δ(r − r0)Ω(r )d3r = Ω(r0)

• Example:

Ω1

Ω2

2 waves

K1 K2

0 1
r

0 1
r

ω1 + ∆ω1 ω2 + ∆ω2

optimal kernels: K̃1 = K1 − K2 K̃2 = K2

0 1
r

0 1
r

a1 = 1, a2 = −1 a1 = 0, a2 = 1

Ω1 = ∆ω1 −∆ω2 , Ω2 = ∆ω2

∆ω1 =
∫
K1Ωdr = K1

(
Ω1

∫ 1/2

0
dr +Ω2

∫ 1

1/2
dr

)
=
K1

2
(Ω1 +Ω2)

∆ω2 =
∫
K2Ωdr =

1
2
K2Ω2 , K1 = K2 = 2

• Solar p-mode kernels

Fig� �� Meridional cuts through three rotation kernels for modes with frequencies � �

�����Hz� for �A� l � ���m � �� �B� l � 	��m � �
� �C� l � 	��m � 	
� The latitudinal

extent of the kernels varies with m�L� where L �
p
l�l � ��� and the radial extent varies

with ��L� Except close to the deepest point where it has appreciable amplitude� each kernel

is nearly just a product of a function of radius and a function of latitude� �D� Meridional

cut through averaging kernels for a regularized leastsquares inversion �as in Fig� �B�� for

target radii and latitudes r � ����R� ��� and r � ���	R� ���� The averaging kernels are

symmetric about the equatorial plane� so that they are also peaked at latitudes ���� and

�����

	� � May �� Dynamics Thompson� Toomre et al�

• Such each location in Sun addressable y Ω(r, θ)



• Result
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1995a ; Charbonneau et al. 1998b ; and references therein).
The transition to the overlying di†erentially rotating
envelope occurs across a thin approximately([0.1 R

_
),

spherical layer often now called the solar tachocline, follow-
ing the work of Spiegel & Zahn (1992). In what follows we
use this term to refer to the full rotational shear layer near
the base of the convective envelope, irrespective of its exact
position with respect to the base of the core-envelope inter-
face. The Ðrst reliable determination of the location and
thickness of the tachocline was carried out by Kosovichev
(1996), who estimated its thickness to be 0.09 ^ 0.04 R

_
.

An inference of the SunÏs internal rotation proÐle from
helioseismic data is illustrated in Figure 1. This shows the
result of inverting the 2 yr LOWL data using a two-
dimensional Regularized Least Squares method (see ° 3.1).
The data were obtained using the LOWL instrument oper-
ating on Mauna Loa on the island of Hawaii. The instru-
ment measures Doppler velocities at the SunÏs surface.
From these, the frequencies of global solar p-mode oscil-
lations (see ° 2) can be deduced.

From a dynamical point of view, the matching of a lati-
tudinal gradient in angular velocity in the envelope to a
rigidly rotating outer radiative core o†ers a challenging
problem in stellar hydrodynamics. Approaching this
problem from the standpoint of laminar theory, Spiegel &
Zahn (1992) constructed unmagnetized tachocline models
under the assumption of latitudinal geostrophic balance
and have shown that the helioseismically inferred thickness
of the solar tachocline can only be reproduced if viscous

FIG. 1.ÈSolar internal rotation proÐle as inferred from 2 yr LOWL
data using a 2D RLS inversion. Contours of constant rotation rate are
shown, the values being in nHz. The trade-o† parameters (see Schou et al.
1994 for details) were and the discretized mesh fork

r
\ 10~5, kh\ 10~3 ;

the solution had 101 points in the radial direction and 25 points in the
latitudinal direction. Only one quadrant is shown, with the equatorial
plane along the bottom edge Éand the rotation axis along the left edge. The
inferred rotation proÐle in the other three quadrants can be obtained by
reÑection in the equatorial plane and the plane of the axis in this Ðgure.
The narrow midlatitude band of deceleration seen at is anr/R

_
^ 0.85

inversion artifact due to the LOWL duty cycle and mode set being
restricted to l ¹ 100 ; it does not appear in inversions using other data sets
(see, e.g., Schou et al. 1998).

momentum transport is strongly enhanced in the horizontal
direction ; otherwise, by the solar age radiative di†usion as
well as angular momentum transport by the secondary,
meridional Ñow broadens the tachocline far beyond its
inferred radial width (see also Elliott 1997). They ascribe
this enhanced horizontal transport to turbulence driven by
shear instability of the di†erential rotation.

Kitchatinov & (1993, 1995) have developed anRu� diger
analytical model for the (anisotropic) turbulent Reynolds
stresses arising from the interaction between rotation and
turbulence in the solar convective envelope, which also
yields a steady state di†erential rotation that is character-
ized by a shear layer immediately beneath the convective
envelope (see Kitchatinov & 1995, Fig. 2). As in theRu� diger
Spiegel & Zahn model, their tachocline is far thicker than
suggested by helioseismology. However, they suggest that
magnetic stresses, rather than enhanced horizontal viscous
coupling, are responsible for keeping the thickness of their
tachocline in agreement with helioseismic inferences

& Kitchatinov 1997 ; MacGregor & Charbonneau(Ru� diger
1999 ; see also Gough & McIntyre 1998).

The introduction of a magnetic Ðeld within the tachocline
is far from being an ad hoc hypothesis. Based on studies of
the stability and rise of toroidal magnetic Ñux ropesÈ
presumed to give rise to sunspot pairs upon emerging
through the photosphereÈit is becoming increasingly clear
that the stably stratiÐed layers located immediately beneath
the convective envelope are the most likely location for the
storage of magnetic Ñux (for a review see 1996). InSchu� ssler
such models, the stability properties of the magnetic Ñux
ropes depend sensitively on the dynamical and thermody-
namical structure of the storage layer, including its radial
extent beneath the envelope.

Because of the strong radial shear present in its equato-
rial region, as revealed by helioseismology, the solar tacho-
cline is also a promising location for the seat of the solar
dynamo. Thin-layer mean-Ðeld dynamo models can and
have been constructed (see, e.g., & BrandenburgRu� diger
1995, and references therein). A general property of such
models is the dependence of the dynamo period on the
thickness of the generating layer, reÑecting the decrease of
the magnetic dissipation time with decreasing thickness. A
related class of dynamo models are the so-called interface
dynamos (Parker 1993 ; Tobias 1996 ; Charbonneau & Mac-
Gregor 1996, 1997), which are characterized by the spatial
segregation of the shear and a-e†ect on either side of the
core-envelope interface. Once again the behavior of the
resulting dynamo is sensitively dependent on the thickness
of the shear layer and relies on the bulk of the layer being
located in the upper part of the stably stratiÐed radiative
core, rather than within the unstably stratiÐed overlying
envelope.

It is an intriguing and often unappreciated fact that the
latitudinal shear proÐle in the solar convection zone lies
close to the stability limit with respect to global, inviscid
horizontal shear instability. Watson (1981) originally
argued that the solar surface latitudinal di†erential rotation
was in fact at the stability limit. However, Dziembowski &
Kosovichev (1987) considered more realistic rotational pro-
Ðles and arrived to the opposite conclusion. More recently
Charbonneau, Dikpati, & Gilman (1999) examined the sta-
bility of the (weaker) horizontal di†erential rotation proÐle
within the tachocline and found it to be stable. On the other
hand, Gilman & Fox (1997) have shown that the simulta-



7. Time-Distance Helioseismology

third bounce

second bounce

first bounce

ray approximation

• Ray paths: horizontal distance ≈ π · depth, length ≈ 4 · depth

• Cross-correlation of time series at two separate points

as function of travel time

• Speed up in hotter regions

• Speed up for wave in flow direction,

slow down in reciprocal direction

• Magnetic field y anisotropy in travel time
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8. Asteroseismology

• Whole solar disk, small l
spectral line shift – Doppler effect

• Oscillations in intensity

→ asteroseismoloy by photometry

good photometers ∆m ∼ 0.01

long time series (weeks): Whole Earth Telescope (WET)

• Spectrum of white dwarf GD 358
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l = 1 n = 15

→ g-modes

→ determination of mass, rotation, magnetic field, ...

Appendix


