

1d hybrid code simulations

Injection of ions

Super/sub alfvenic flows

perpendicular/quasiparallel magnetic fields

Weak/strong injection

Simulation box

(a) Local injection of test particles (b) Distributed injection of massive particles

 $\begin{array}{c} & & \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \\ \hline 0 & & x \end{array}$

Flow without pickup

Injection of test particles

? = 90°, super_alfvenic

U. Motschmann K.-H. Glassmeier ISSI, Bern August 2000

 M_{A} =16 r_{g} =16 ? = 2 p r_g ≈ 100 ? = 90°, sub_alfvenic

 $M_{A} = 0.5$ $r_{g} = 0.5$ $? = 2 p r_{g} \approx 3$

Injection of massive particles

-no injection point but gaussian shaped injection region

↓↓↓↓

-thermal velocity < background flow velocity

 $\mathbf{0}$

-weak but finite injection rate (no strong obstacle, no shock)

Х

Superalfvenic, perpendicular

 $? = 90^{\circ}$

Superalfvenic+strong injection=shock

Subalfvenic, perpendicular

 $? = 90^{\circ}$

Equivalence of massloading and nozzle

Nozzle

Massloading

 $\rho u A = const$

 $\rho u d_x u = -d_x p$

increasing mass flow density

 $d_x(\rho \ u) = q > 0$

 $\rho \ u \ d_x u = - \ d_x \ p$ $- \ d_x \ B^2/2\mu_0$

 $p = c_s^2 \rho$ $B^2 = v_A^2 \mu_0 \rho$

$$p = c_s^2 \rho$$