The formation of giant planets:

3

Confronting theory with observations

W. Benz, Physikalisches Institut University of Bern Collaborators: Y. Alibert, C. Mordasini, O. Nyffenegger

Solar system: Jupiter and Saturn

- provide detailed tests for formation models →necessary vs. accidental

- surface abundance compared to solar:

M_z/M_⊕

C	3.7 ± 0.9	Ar	1.8 ± 0.4
N	3.1 ± 1.2	Kr	2.4 ± 0.4
S	2.7 ± 0.6	Xe	2.1 ± 0.4

Mahaffy et al. 2000; Wong et al. 2004

C	3.2 ± 0.8	С	8.1 ± 1.6
N	2.4 ± 0.5		
S	12 ??		J

Brigg & Sackett 1989; Kerola et al. 1997 Flasar et al. 2005

Transiting planets: Exoplanetology

9 transiting planet detected so far...

Progress in ground-based RV detections

Direct imaging: 3 candidates

Very special systems can be imaged from the ground today... far from terrestrial planets in the habitable zone!

Formation of cores and terrestrial planets: Sticking and survival

The core accretion: scenario

The core accretion: basics

1) rapid accretion of planetesimals until feeding zone is depleted: Phase I

2) slow accretion of gas and planets: Phase II

3) cooling instability: Runaway gas accretion: Phase III

Taurus

🗖 Ophiu

The core accretion: Extended models

- disk is evolving: P & T at planet boundary are evolving
- growing planets are migrating
- better treatment of planetesimal infall

Extended models: Formation time scale

Formation of Jupiter and Saturn

Monte Carlo models of giant planet formation

Giant planet formation models following the core-accretion scenario

Understanding data is key to further progress

Future progress

- Star formation: initial conditions method: long wavelength imaging and spectroscopy

- A complete census of the solar neighborhood method: direct + indirect detections ... the collector's approach

Future progress earth-shine spectrum Woolf et al 2002 - Physical studies of existing planets *method: imaging + spectroscopy* ... the astronomer's approach why such large differences Mars - Ground truth: Key characteristics of solar system method: In situ measurements and sample return Farth \rightarrow accidental vs. necessary - mixing and timescales (cosmochemistry) - collisional evolution - migration - interiors and atmospheres extra-solar planets provide diversity

solar system provides details \rightarrow both are required

precision:

(Mars, Moon, Venus: NASA photos.)

few µ-as astrometry
millimagnitude photometry

ļ

Expected number of discoveries as a function of distance

Δd (pc)	N_{\star}	Δa (AU)	$N_{\rm d}$ (1)	Nm (2)
0-100	~ 61000	1.3 - 5.3	≥ 1600	≥ 640
100-150	${\sim}114000$	1.8 - 3.9	≥ 1600	≥ 750
150-200	~ 295000	2.5 - 3.3	≥ 1500	≥ 750

Expected number of transits as a
function of stellar type and
orbital separation

	F	G	ĸ	M	Sum
0 < a < 2AU:	3000	2000	1500	15	6500
a > 2AU:	50	30	20	0	100

- giant planets out to $\approx 200 \text{ pc}$
- mass-radius relation
- target definition
- \rightarrow still indirect observations

Transit: Earth-like planets

Expected detections

_						Bord	é et al. 20
	a, (AU)	T _P (K)	1 R _e	1.5 R _#	2 R _#	3 R _#	5 R _#
	0.05	1200	120	570	1320	2800	3800
	0.14	750	17	90	260	750	1300
	0.30	500	2	17	55	160	240
	0.86	300	0	1	3	3	3
	1.00	278	0	1	2	2	2

mostly "hot planets" →no Earth in the HZ

ESA's Cosmic Vision: 2015-2025

Theme 1:

What are the conditions for planet formation and the emergence of life?

1.1 From gas and dust to stars and planets1.2 From exo-planets to biomarkers1.3 Life and habitability in the solar system

Direct imaging: Spectroscopy

Resolved imaging

Comparative exo-planetology - composition and climate - formation

- evolution

Direct imaging: The search for life

Habitability, evolution and survival

- Habitability
 - liquid water
 - → requires energy source
 - nutrients: N, Mg, P, S, K, Ca, ...
- Evolution
 - renewal of nutrients
 - \rightarrow geological activity
 - interactions life processes planet → changing environment

plate tectonics

- Survival
 - natural hazards
 → extinctions
 other hazards

Solar system only place where these processes can be studied in enough details

Conclusions

- Field is observationally driven, theory has not kept pace...
- Theory is making progress but there are still major aspects that are not yet understood
- Core-instability scenario allows quantitative comparisons with observations. Extended models have been confronted with:
 - solar system giant planets
 internal structure
 surface abundances
 - extra-solar planets
 - lifetime of proto-planetary disks
 - Monte Carlo calculations required to extract statistical information
 mass and orbital distributions not yet satisfactory
 explains correlation with metallicity
- The future looks bright (solar system + extra-solar planets)

Much of astronomy is phenomenological (descriptive) but, ultimately, the goal is to conceive and verify universal theoretical constructs that explain the observed behavior of astronomical objects across the vast scales of the Universe. Accordingly, support for theoretical investigations must be proportional and synchronized with the great data-gathering projects undertaken in laboratories and observatories.

OECD report on large scale project in astronomy