The formation of giant planets:

Confronting

 theory with observationsW. Benz, Physikalisches Institut University of Bern Collaborators: Y. Alibert, C. Mordasini, O. Nyffenegger

Solar system: Jupiter and Saturn

- provide detailed tests for formation models
\rightarrow necessary vs. accidental
- interiors models
(Saumon \& Guillot 2004)

- surface abundance compared to solar:

C	3.7 ± 0.9	Ar	1.8 ± 0.4
N	3.1 ± 1.2	Kr	2.4 ± 0.4
S	2.7 ± 0.6	Xe	2.1 ± 0.4

Mahaffy et al. 2000; Wong et al. 2004

C	3.2 ± 0.8	C	8.1 ± 1.6
N	2.4 ± 0.5		
S	$12 ? ?$		

Brigg \& Sackett 1989; Kerola et al. 1997
Flasar et al. 2005

Extra-solar planets:
 Over ten years already

Global statistics:

- 146 planetary systems
- 169 planets
- 17 multiple planet systems

Extra-solar planet encyclopedia
10 January 2006
New field:

- started in Europe
- $\sim 50 \%$ discoveries \in Europe

Diversity

- close-in giant planets
- evaporating planets
- eccentric planets

For the most part, little physical information about the planets themselves

Transiting planets: Exoplanetology

9 transiting planet detected so far...

Mass-radius relation

Some atmospheric composition
Charbonneau et al 2004

Determination of some important physical characteristics

$$
\rightarrow \text { only giant planets close-by }
$$

\rightarrow no real spectroscopy yet!

Progress in ground-based $R V$ detections

> Earth-like planet detection from the ground by $2010 ?$
>
> \rightarrow only indirect observations

Direct imaging: 3 candidates

$2 \mathrm{M} 1207 \mathrm{~b}:$
$\mathrm{M} \approx 5 \mathrm{M}_{\mathrm{J}}$
$\mathrm{d}=41 \mathrm{AU}$

GQ Lup b:
$\mathrm{M} \approx 21.5 \mathrm{M}_{\mathrm{J}}$
$\mathrm{d}=103 \mathrm{AU}$

AB Pic b:
$\mathrm{M} \approx 13.5 \mathrm{M}_{\mathrm{J}}$
$\mathrm{d}=275 \mathrm{AU}$

Very special systems can be imaged from the ground today.. far from terrestrial planets in the habitable zone!

The problem:

Formation of cores and terrestrial planets: Sticking and survival

$\stackrel{\mathrm{ok}}{\longleftrightarrow}$

Small bodies:
 Size dependent gas drag

- solids $\quad \frac{v_{k}^{2}}{r}=\frac{G M}{r^{2}}$
- gas $\frac{v_{g}^{2}}{r}=\frac{G M}{r^{2}}+\frac{1}{\rho} \frac{d P}{d r} \leq \frac{v_{k}^{2}}{r}$

velocity difference:
$\left(v_{k}-v_{g}\right)=$ few $10^{-3} v_{k} \approx 100 \mathrm{~m} / \mathrm{s} @ 1 A U$
- escape velocity:

$$
v_{\text {esc }}=\sqrt{\frac{2 G M}{R}}=\sqrt{\frac{8 \pi G \rho}{3}} R=1.3\left(\frac{R}{1 \mathrm{~km}}\right) \mathrm{m} / \mathrm{s} \quad \longrightarrow \quad v_{\text {coll }} \gg v_{\text {esc }} \begin{gathered}
\text { disruptions } \\
\text { rather than } \\
\text { growth! }
\end{gathered}
$$

Possible solutions:

1) gravitational instabilities

 in dust layer2) vortex formation in gaseous disk
3) mechanical properties of planetesimals

Collisional growth: Gravitational encounters

simulation of the collisional evolution of 1 million bodies using an orbit averaged Monte Carlo scheme

> Gravitational encounters lead to equipartition of random kinetic energy
\Rightarrow small bodies have larger random velocities

Runaway and oligarchic growth

Gravitational focusing enhances collisional cross section:

$$
\sigma=\sigma_{0}\left(1+\frac{v_{e s c}^{2}}{v_{r e l}^{2}}\right)
$$

Bodies grow by colliding with bodies nearly as big as themselves

giant collisions must have been frequent occurences

The core accretion: scenario

The core accretion: basics

1) rapid accretion of planetesimals until feeding zone is depleted: Phase I
2) slow accretion of gas and planets: Phase II

3) cooling instability: Runaway gas accretion: Phase III

Circumstellar disks

1) Lifetime

L-band ($3.4 \mu \mathrm{~m}$) photometry:

- excess caused by μ-sized dust @ $~ 900 \mathrm{~K}$ \rightarrow inner disk only?

Giant planets must form within 4-8 Myr

2) Masses

Beckwith \& Sargent 1996

[^0]
The core accretion: Pollack et al. 1996

- constant T and P (no disk evolution)
- fixed embryo location (no migration)

- formation timescale very sensitive to disk mass
- need relatively massive nebula to form planets within disk lifetime

The core accretion: Extended models

- disk is evolving: P \& T at planet boundary are evolving
- growing planets are migrating
- better treatment of planetesimal infall

Extended models: Formation time scale

formation speed-up of ≈ 30 !
\rightarrow planets form well within disk lifetime!

Formation of Jupiter and Saturn

species	measured computed	
Ar	1.8 ± 0.4	2.
Kr	2.4 ± 0.4	2.1
Xe	2.1 ± 0.4	2.6
C	3.7 ± 0.9	2.8
N	3.2 ± 1.2	2.5
S	2.7 ± 0.6	2.1

species	measured computed
Ar	1.7
Kr	1.9
Xe	
C	3.2 ± 0.8
N	2.4 ± 0.5
S	2.2

formation models can account for the bulk properties of Jupiter and Saturn

Monte Carlo models of giant planet formation

Giant planet formation models following the core-accretion scenario

- 0.6 M_{\oplus} seed cores
- initial conditions from

1) observations
2) theory

mass distribution

metallicity correlation

Models are getting better at explaining the characteristics of the currently observed population of extra-solar planets
potentially detectable planets RV $5 \mathrm{~m} / \mathrm{s}$ precision

Models predict many more planets with small masses!

We dont know anything about $\geq 90 \%$ of the planets that are out there

The tip of the iceberg

Radial velocity technique is most sensitive to large masses close-by....
underlying planet population

Understanding data is key to further progress

Metal rich systems favor the formation of massive planets

Massive systems are more easy to detect

Metallicity correlation

To find small mass planets metal rich stars may not necessarily be better targets!

Future progress

- Star formation: initial conditions method: long wavelength imaging and spectroscopy

- A complete census of the solar neighborhood method: direct + indirect detections
.. the collector's approach

Future progress

- Physical studies of existing planets method: imaging + spectroscopy
... the astronomer's approach

why such large differences
- Ground truth: Key characteristics of solar system method: In situ measurements and sample return \rightarrow accidental vs. necessary
- mixing and timescales (cosmochemistry)
- collisional evolution
- migration
- interiors and atmospheres

```
extra-solar planets provide diversity
    solar system provides details
        both are required
```


Gaia (planets)

precision:

- few μ-as astrometry
- millimagnitude photometry
(
Expected number of discoveries as a
function of distance

$\Delta \mathrm{a}(\mathrm{AU})$				
$\Delta \mathrm{d}(\mathrm{pc})$	$N_{\mathrm{a}}(1)$	$N_{\mathrm{m}}(2)$		
$0-100$	~ 61000	$1.3-5.3$	≥ 1600	≥ 640
$100-150$	~ 114000	$1.8-3.9$	≥ 1600	≥ 750
$150-200$	~ 295000	$2.5-3.3$	≥ 1500	≥ 750

Expected number of transits as a function of stellar type and orbital separation

				K	K
	F	M	Sum		
$0<$ a < 2AU:	3000	2000	1500	15	6500
a > 2AU:	50	30	20	0	100

[^1]
Initial conditions: The physics of cold gas...

star formation

environment: Galactic, stellar

Gas \& dust

coagulation, composition/size water, biogenic molecules
protostars, protoplanetary disks

Herschel + JWST

Planets \& disks

Transit: Earth-like planets

Expected detections

Launch: 2006

a_{1} (AU)	$T_{\mathrm{P}}(\mathrm{K})$	$1 R_{4}$	$1.5 R_{4}$	$2 R_{4}$	$3 R_{4}$	$5 R_{4}$
0.05	1200	120	570	1320	2800	3800
0.14	750	17	90	260	750	1300
0.30	500	2	17	55	160	240
0.86	300	0	1	3	3	3
1.00	278	0	1	2	2	2

mostly "hot planets"
\rightarrow no Earth in the HZ

Keplèr

Launch: 2008

ESA's Cosmic Vision: 2015-2025

Theme 1:

What are the conditions for planet formation and the emergence of life?
1.1 From gas and dust to stars and planets 1.2 From exo-planets to biomarkers
1.3 Life and habitability in the solar system

Direct imaging: Spectroscopy

Earth from Voyager 1 on 14.2.90, 42.6 AU away

Resolved imaging

Comparative exo-planetology

- composition and climate
- formation
- evolution

Segura et al. 2005

Direct imaging: The search for life

- atmospheric bio-signatures

difficulties:
low resolution

simulated Darwin spectrum
time dependence

- surface bio-signatures vegetation red-edge, seasons, ...

Woolf et al 2002

MacKay et al 1997

Extraordinary claims require extraordinary evidences!

Habitability, evolution and survival
 (life as we know it...)

interactions

Solar system only place where these processes can be studied in enough details

Conclusions

- Field is observationally driven, theory has not kept pace...
- Theory is making progress but there are still major aspects that are not yet understood
- Core-instability scenario allows quantitative comparisons with observations. Extended models have been confronted with:
- solar system giant planets
- internal structure
- surface abundances
extra-solar planets
- lifetime of proto-planetary disks
- Monte Carlo calculations required to extract statistical information - mass and orbital distributions not yet satisfactory
- explains correlation with metallicity
- The future looks bright (solar system + extra-solar planets)

Much of astronomy is phenomenological (descriptive) but, ultimately, the goal is to conceive and verify universal theoretical constructs that explain the observed behavior of astronomical objects across the vast scales of the Universe.
Accordingly, support for theoretical investigations must be proportional and
synchronized with the great data-gathering projects undertaken in laboratories and
observatories.

[^0]: typical masses: 0.01-0.1 $M_{\text {sun }}$

[^1]: - giant planets out to $\approx 200 \mathrm{pc}$
 - mass-radius relation
 - target definition
 \rightarrow still indirect observations

