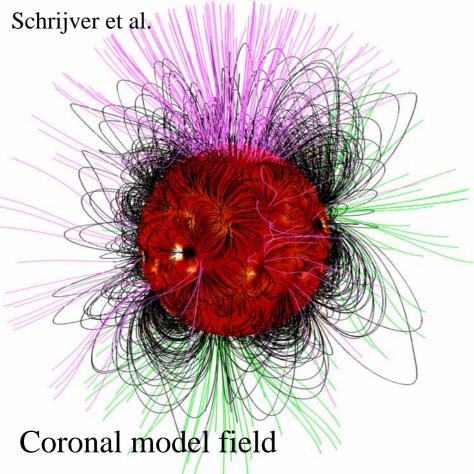
Coronal heating and energetics

- Magnetic structures in the solar corona
- Coronal heating, what does it mean?
- Flares and coronal cooling
- Observations of MHD waves in loops
- Dissipation processes in the corona
- Oscillations of coronal loops

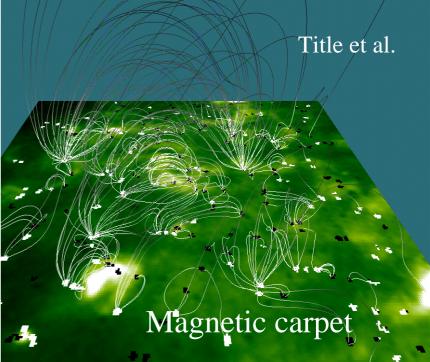
X-ray corona

cool

1-2 M K


solar wind

radiation


Active corona in three EUV colours

Key player: coronal magnetic field

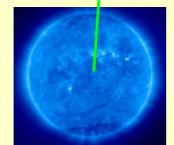
Modelling by extrapolation (Potential, force-free, MHD)

- Closed loops and streamers
- Coronal funnels and holes
- Magnetic transition region (network)

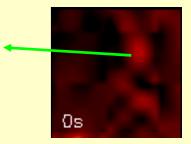
Coronal heating - an unsolved problem

Why?

Facing complexity and variability:


- Solar corona is non-uniform and highly structured
- Corona varies in time (magnetic activity cycle)
- Temporal and spatial changes occur on all scales
- Corona is far from thermal (collisional) equilibrium
- Coronal processes are dynamic and often nonlinear

Coronal heating: a buzzword


Coronal heating?

closed magnetic loops are observed at a wide range of temperatures

polar plumes are observed at "coronal" temperatures in open magnetic structure, the coronal holes

Small brightenings at a range of wavelenths

special energy requirements in cool (10⁴ K) prominence

Time and space dependent

"diffuse" corona radiating at 2 MK is not confined to "bright" loops

Energy balance in the corona

Coronal loops:

Energy balance mainly between radiative cooling, mechanical heating and heat conduction

$$\mathbf{V} \cdot \nabla \mathbf{s} = \mathbf{ds}/\mathbf{dt}|_{R} + \mathbf{ds}/\mathbf{dt}|_{M} + \mathbf{ds}/\mathbf{dt}|_{C}$$

Coronal holes:

Energy balance mainly between solar-wind losses and mechanical heating

$$\nabla \cdot (\mathbf{F}_{\mathsf{K}} + \mathbf{F}_{\mathsf{G}} + \mathbf{F}_{\mathsf{M}}) = \mathbf{0}$$

 $F_{M} = \rho V_{sw} (V_{sw}^{2} + V_{\infty}^{2})/2$ $V_{\infty} = 618 \text{ km/s}$

Energetics of the solar corona

Parameter (erg cm ⁻² s ⁻¹)	Coronal hole (open)	Active region (closed)
Chromospheric radiation loss	4 10 ⁶	2 10 ⁷
Radiation	10 ⁴	< 10 ⁶
Conduction	5 10 ⁴	$10^5 - 10^6$
Solar wind	(5-10) 10 ⁵	(< 10 ⁵)

Photosphere: $6.3 \ 10^{10} \text{ erg cm}^{-2} \text{ s}^{-1}$

 $10^5 \text{ erg cm}^{-2} \text{ s}^{-1}$ = 100 W m⁻²

Coronal heating, what does it mean?

Mechanical and magnetic energy:

Generation/release

Transport/propagation

Conversion/dissipation

 Magnetoconvection, restructuring of fields and magnetic reconnection

 Magnetohydrodynamic + plasma waves, shocks

 Ohmic + microturbulent heating, radiative cooling, resonance absorption

Collisional heating rates

Chromosphere: $N = 10^{10} \text{ cm}^{-3} \text{ h}_{\text{G}} = 400 \text{ km}$. Perturbations: $\Delta L = 200 \text{ km}, \Delta B = 1 \text{ G}, \Delta V = 1 \text{ km/s}, \Delta T = 1000 \text{ K}$.

 $H_V = \eta (\Delta V / \Delta L)^2 = 2 \ 10^{-8}$ Viscosity: (erg cm⁻³ s⁻¹) $H_{\rm C} = \kappa \Delta T / (\Delta L)^2 = 3 \ 10^{-7}$ **Conduction:** Joule: $H_1 = j^2/\sigma = (c/4\pi)^2 (\Delta B/\Delta L)^2/\sigma = 7 \ 10^{-7}$ Radiative cooling: $C_R = N^2 \Lambda(T) = 10^{-1} \text{ erg cm}^{-3} \text{ s}^{-1}$ Smaller scale, $\Delta L \approx 200$ m, required λ_{Coll} ≈ 1 km Effective Reynolds number must be smaller by 10⁶ – 10⁸

Requirements on coronal transport

Coronal plasma beta is low, $\beta \approx 0.1 - 001$, --> strongly magnetized particles, which freely move parallel to **B**.

Coulomb collisional transport, then diffusion coefficient: $D_c = (\rho_e)^2 v_e \approx 1 \text{ m}^2 \text{s}^{-1}$ with electron Larmor radius, $\rho_e \approx 25 \text{ cm}$, and collision frequency, $v_e \approx 10 \text{ s}^{-1}$; $\rho_p \approx 10 \text{ m}$, $B \approx 1 \text{ G}$, $n_e \approx 10^8 \text{ cm}^{-3}$.

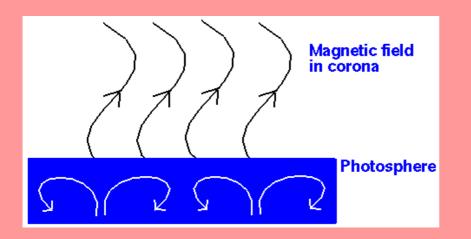
Enhanced transport requires "anomalous" processes: Waves, turbulence, drifts, flows, stochastic fields...., $v_e \rightarrow \Omega_e$.

Litwin & Rosner, ApJ **412**, 375, 1993 Loop switch-on time: $\tau \approx 1-10$ s. Is the current channel scale comparable to transverse loop dimension, a ≈ 1000 km? Cross diffusion time: $t_D = a^2/D \approx 10^{12}$ s.

Coronal heating mechanisms

Wave (AC) mechanisms (generation, propagation, non-uniformity)

- Sound waves, shocks (barometric stratification), turbulence
- Magnetoacoustic (body, surface), Alfvén (resonance absorption)
- Plasma (dispersive) waves (Landau damping), ion-cyclotron waves


Current sheet (DC) mechanism (formation of sheets, flux emergence)

- Quasi-static current sheet formation in force-free fields
- Dynamic sheet formation driven by flux emergence
- Field-aligned currents (ohmic and anomalous resistivity)

Heating by micro/nano/pico flares (magnetic field reconnection)

- Thermalization of energetic particles (Bremsstrahlung: radio to X-rays)
- Reconnection driven by colliding magnetic flux

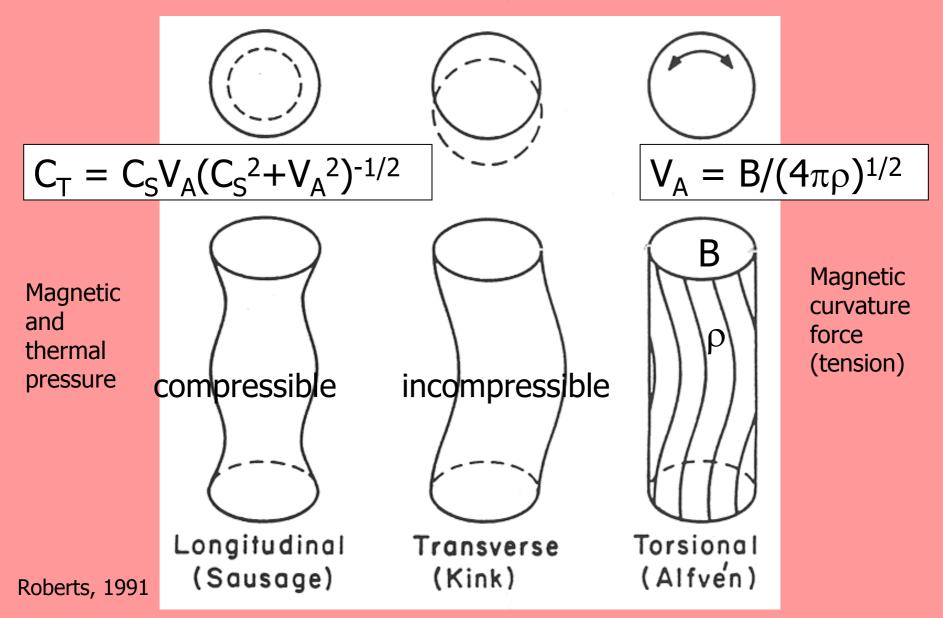
MHD wave heating

Coronal magnetic field rooted down in turbulent photosphere

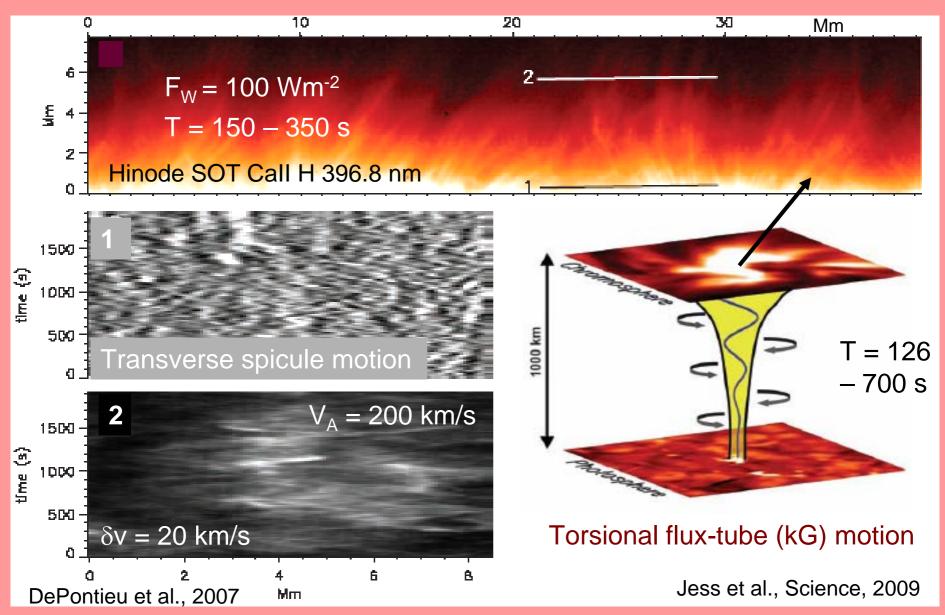
=> Waves!

- Generation of MHD waves driven by magneto-convection
- Phase mixing due to gradients
- Absorption at small scales

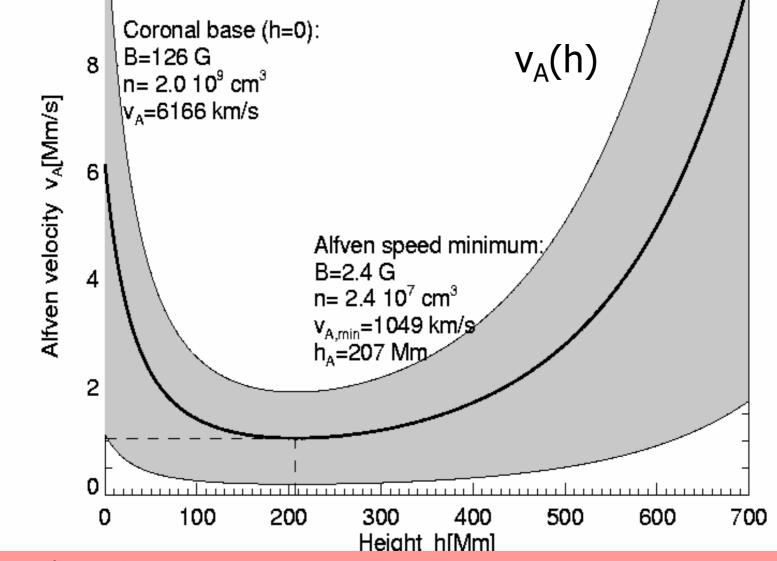
Decement	
Process	Period /s
Alfvèn/fast	< 5
magnetosonic	
Sound/slow	< 200
magnetosonic	
Gravity	40
Conduction	600
Radiation	3000
Convection	> 300


Detectability of coronal MHD waves

- Spatial (pixel size) and temporal (exposure/cadence) resolution be less than wavelengths and periods
- **Spectral resolution** to be sufficient to resolve Doppler shifts and broadenings (best, SUMER, 1-15 km/s)


Spacecraft/Instrument	Minimum pixel	Temporal resolution,	Spectral bands
	size/ arcsec	Maximal cadence/ s	
SOHO/EIT	2.6	30	EUV
SOHO/CDS	2	30	EUV
SOHO/UVCS	12	seconds - hours	EUV/FUV/WL
SOHO/SUMER	1	10	EUV/FUV
SOHO/LASCO C1	5.6	60	WL
Yohkoh/SXT	4	a few	SX
Yohkoh/HXT	60	0.2	HX
TRACE	0.5	10	EUV/FUV/WL

Nakariakov, 2003


Oscillations of magnetic flux tube

Alfvén waves in solar chromosphere

Varying coronal Alfvén speed

Aschwanden, 2004

Alfven waves in prominence

T = 20000 K

Ca II 396.8 nm

Linear magnetohydrodynamic waves

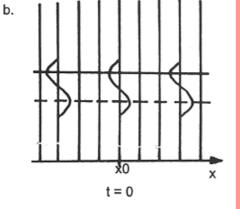
Background pressure equilibrium:

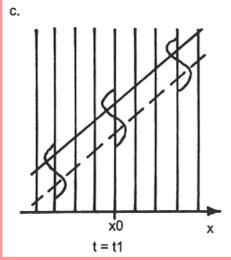
$$\nabla(p_0 + \frac{B^2}{8\pi}) = 0$$

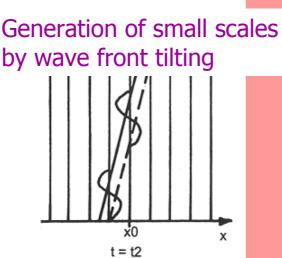
Coupled linear wave equations (total pressure p_T):

$$\rho_0 \left(\frac{\partial^2}{\partial t^2} - c_A^2 \frac{\partial^2}{\partial z^2} \right) \mathbf{v}_\perp = -\nabla_\perp \left(\frac{\partial p_T}{\partial t} \right), \quad \frac{\partial p_T}{\partial t} = \rho_0 \left(c_A^2 \frac{\partial v_z}{\partial z} - \left(c_s^2 + c_A^2 \right) \nabla \cdot \mathbf{v} \right)$$
$$\rho_0 \left(\frac{\partial^2}{\partial t^2} - c_t^2 \frac{\partial^2}{\partial z^2} \right) v_z = -\left(\frac{c_t}{c_A} \right)^2 \frac{\partial}{\partial z} \left(\frac{\partial p_T}{\partial t} \right) \qquad p_T = p + \frac{1}{4\pi} \mathbf{B}_0 \cdot \mathbf{B}$$

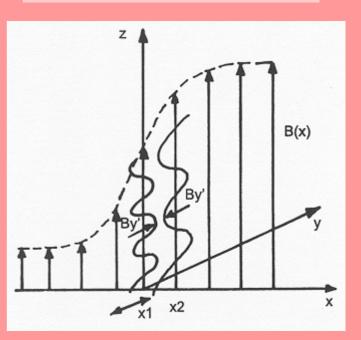

Alfven, sound, and tube wave phase speed:


$$c_A = B_0 / \sqrt{(4\pi\rho_0)}$$
, $c_s = \sqrt{\gamma p_0 / \rho_0}$, $c_t = c_s c_A / \sqrt{c_s^2 + c_A^2}$

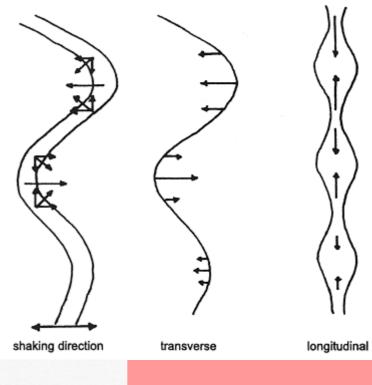

Roberts, 1985

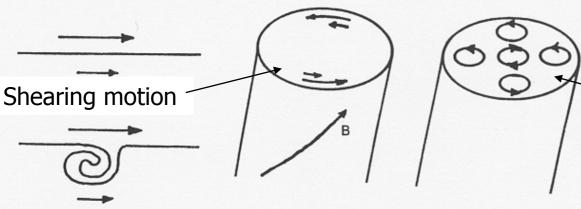

Coronal heating mechanisms I

Resonant absoption of magnetoacoustic surface waves on a field gradient



Phase mixing leads to current sheets and small scale gradients -> dissipation


Ulmschneider, 1998


Coronal heating mechanisms II

Pressure equilibrium: $p_e = p_i + B_i^2/8\pi$

Gas pressure: $p_e \approx 1 \text{ dyn/cm}^2$ Equipartition field: $B_i \approx 1 \text{ kG}$

- Generation by turbulence
- Wave mode couplings

Turbulent heating

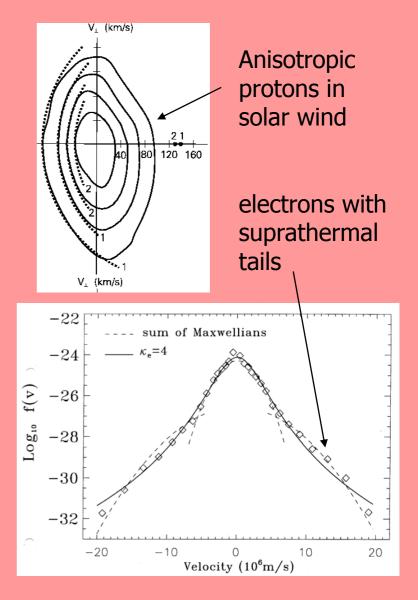
Decay into smaller vortices or flux tubes

Heyvaerts & Priest, 1983

Coronal heating mechanisms III

Heating by kinetic plasma waves Absorption of high-frequency waves Wave generation and transport?

Damping rate: $\gamma/\omega \sim \partial f/\partial v$


• Landau damping: $\omega - \mathbf{k} \cdot \mathbf{v} = 0$

• Cyclotron damping: $\omega - \mathbf{k} \cdot \mathbf{v} \pm \Omega = 0$

Advantage: Processes occur at small scales, near the ion inertial length or gyroperiod,

$$l = V_A/\Omega$$
, $\tau = 2\pi/\Omega$

Problem: Velocity distribution are unknown; in-situ evidence for non-thermal features ->

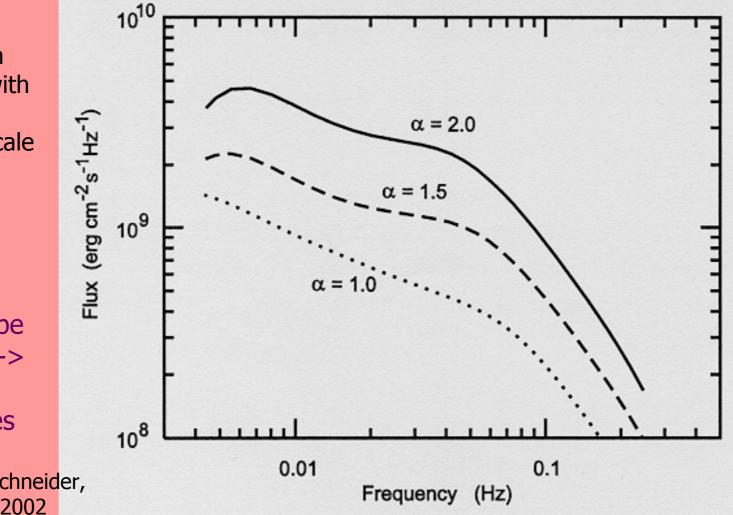
Detectability of plasma waves

 Spatial (pixel size) and temporal (exposure/cadence) resolution be less than wavelengths and periods --> presently not possible

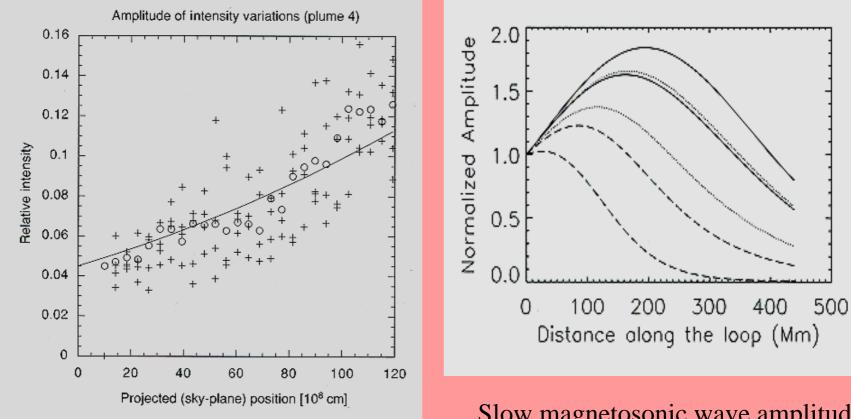
 Spectral resolution is sufficient to resolve Doppler shifts and broadenings, due to the integrated effects of the unresolved highfrequeny turbulence with a line-of-side amplitude ξ, which leads to an effective ion temperature:

$$T_{i,eff} = T_i + m_i / (2k_B) < \xi^2 >$$

Shortest scales: Proton cyclotron wavelength \approx 100 m in CH $\lambda_p = 2\pi v_A / \omega_{gp} = 1434 \text{ [km]} (n/\text{cm}^{-3})^{-1/2}, P_p = 2\pi / \omega_{gp} = 0.66 \text{ [ms]} (B/G)^{-1}$ Largest scales: $\lambda < L$ and P < T, where L is the extent of field of view and T the duration of observational sequence.


Wave spectrum generated by turbulent shaking of flux tubes

Here α is the mixing length parameter, with $\lambda = \alpha$ H, and barometric scale height H.


Photosphere: H=300 km.

Thin flux tube oscillations -> torsional Alfvén waves

Musielak & Ulmschneider, A&A, **386**, 606, 2002

Wave amplitudes in numerical model

Compressive wave amplitude relative to background in *open plume* versus height

Slow magnetosonic wave amplitude versus height, with $\delta V_0 = 0.02 C_s$, in a coronal *magnetic loop*

Ofman et al., 1999

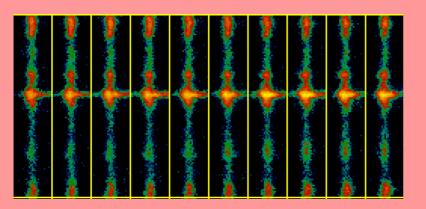
Wave steepening

Nakariakov et al., 2000

Coronal cooling, what does it mean?

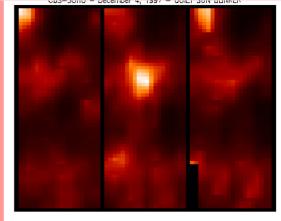
Heating and cooling varies spatially and temporally!

• Radiative cooling: quiet emissions, flares, blinkers, brightenings, in UV, EUV, and X-rays


 Cooling through particles: solar wind, energetic ions and electrons Dense plasma in magnetic + gravitational confinement

 Dilute plasma escaping on open field lines

Multitude of small brightenings


Active region transient brightenings (SXT), Explosive events (SUMER),

EUV brightenings (EIT, TRACE), Blinkers (CDS)....

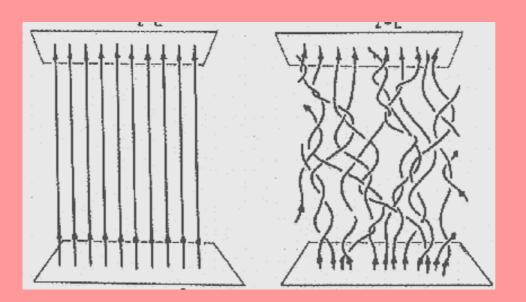
Explosive events (Innes et al., 1997)

- 2 x 10⁵ K
- 60 s
- 160 kms⁻¹
- 2 arcsec (1500 km)

Blinkers (Harrison, 1997)

- 2 x 10⁵ K
- 1000 s
- 20 kms⁻¹
- 10 arcsec (7500 km)

Solar flare in the corona

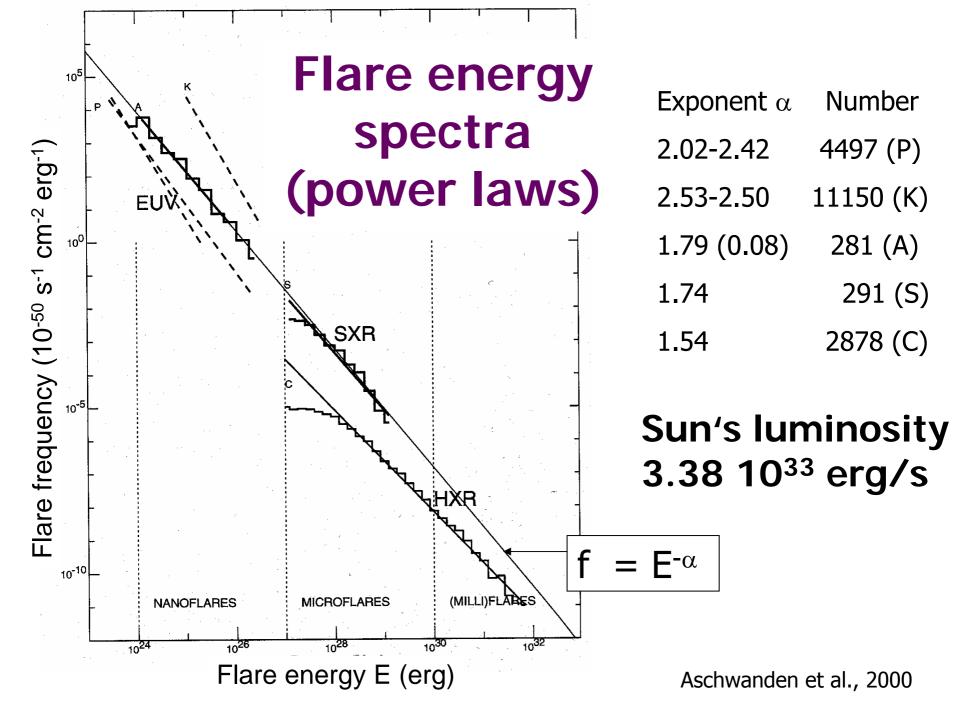


SOHO EIT

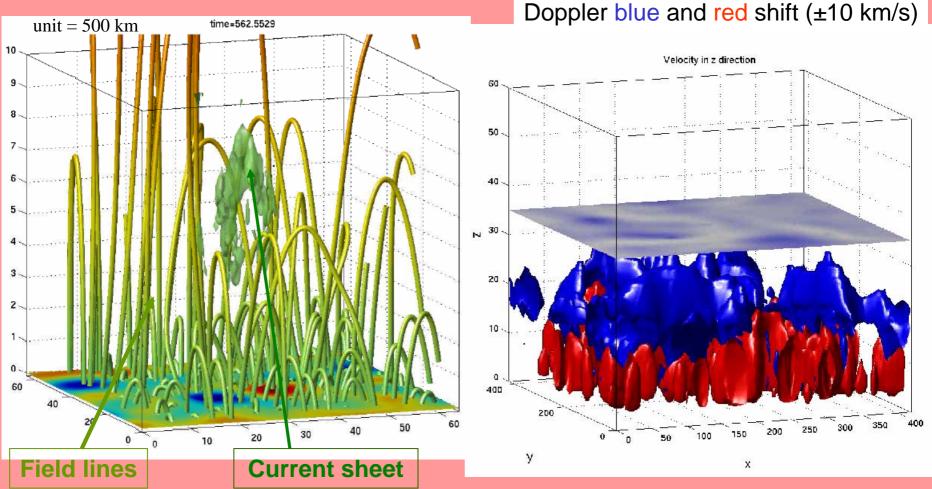
Impulsive radiative cooling

Flare

Ubiquitous magnetic reconnection


Parker's (1988) nanoflare concept Power-law of flare frequency f against energy E

 $f(E) = f_0 E^{-\alpha}$


Spectral index, $\alpha < -2$, for nanoflare dominated heating

Self-organised criticality:

- Corona is modeled as an externally driven, dissipative dynamical system.
- Larger catastrophes are triggered by a chain reaction of many smaller events.

Reconnection in transition region

Results from numerical multi-fluid simulation with anomalous resisitivity

Büchner and Nikutowski, 2004, 2005

Coronal ultraviolet emission from multiple filamentary loops

1. Filamentary nature of loops is consequence of fine solar surface fields....

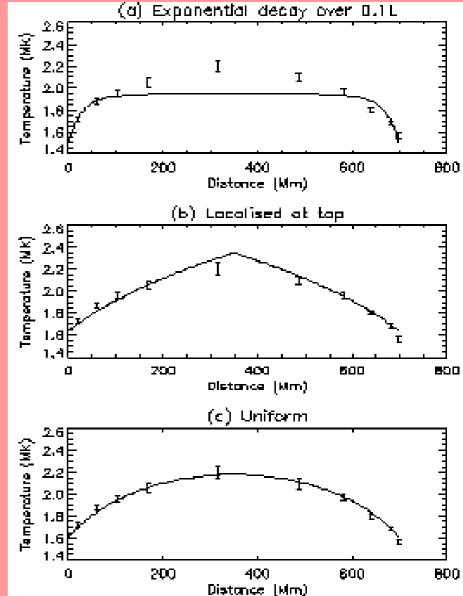
2. Transient localised heating with threshold.....

3. Non-classical diffusive perpendicular transport by turbulence too slow....

4. Field line stochasticity...

Litwin & Rosner, ApJ **412**, 375, 1993

Relative rarity of loops, high contrast


Well-defined transverse dimension

Measuring thermal structure of loops

Yohkoh/SXT observationsSpatially uniform heating

Priest et al., 2000

Coronal heating - an unsolved problem

Why?

Incomplete and insufficient diagnostics:

• Only remote-sensing through photons (X-rays, extreme ultraviolet (EUV), visible, infrared) and electromagnetic waves (radio, plasma), and corpuscular radiation (solar wind, energetic particles)

• No coronal in-situ measurements, such as possible in other solar system plasmas (Earth's magnetosphere, solar wind,.....)

Impulsively driven oscillations

TRACE

Period/s 136-649
Decay time/s 200-1200

Amplitude/km 100-9000

Schrijver et al. (2002) and Aschwanden et al. (2002) provided extensive overview and analysis of many cases of flare-excited transversal oscillations of coronal loops.

Detection of longitudinal waves

Intensity (density) variation: Slow magnetoacoustic waves

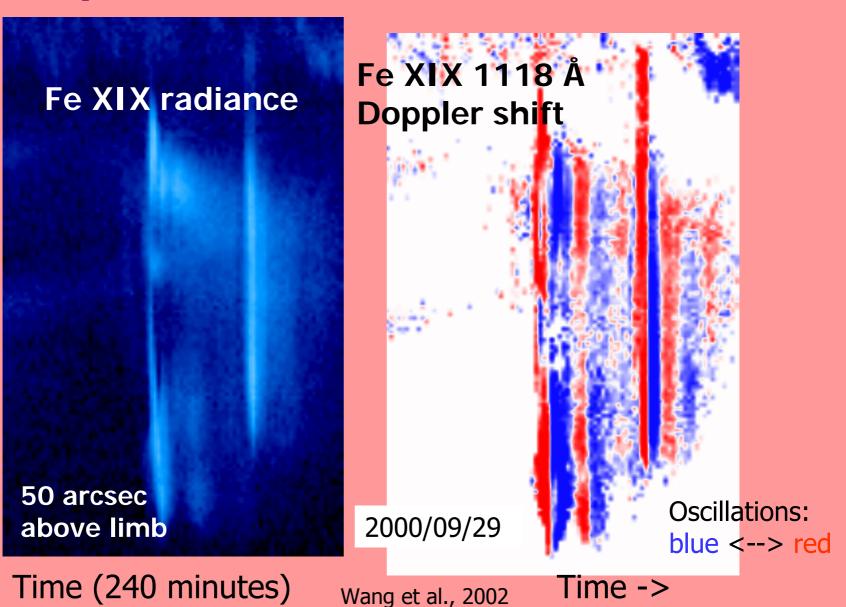
TRACE

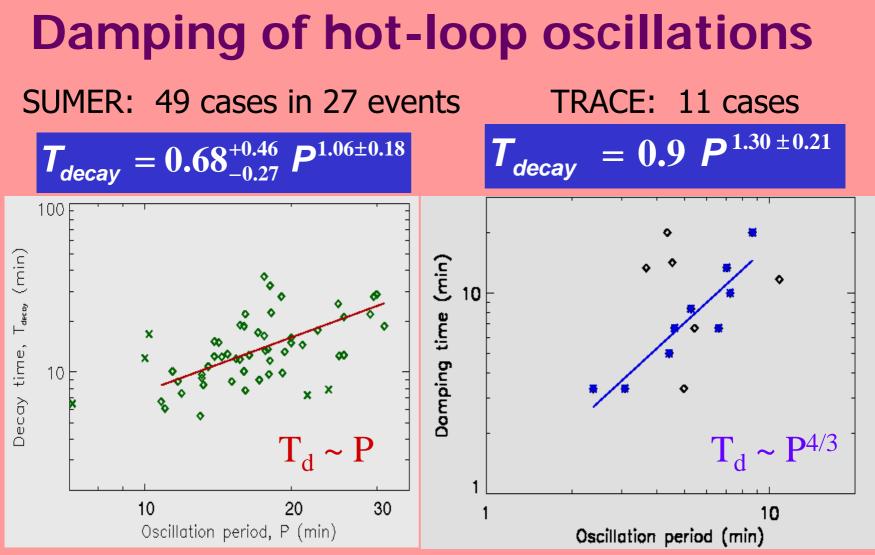
Loop images in Fe 171 Å at 15 s cadence

1000 Fime (seconds) 10 20 25 5 15 30В Along the structure

De Moortel et al., 2000

Loop oscillation properties


Parameter	Range
Footpoint length	10.2 - 49.4 Mm
Footpoint width	3.9 - 14.1 Mm
Transit period	1.3 - 6.3 s
Propagation speed	65 - 205 km s ⁻¹
Relative amplitude	0.7 - 14.6 %
Damping length	2.9 - 18.9 Mm
Energy flux	195 - 705 mW m ⁻²


De Moortel, Ireland and Walsh, 2002

 $\mathbf{D}_{\boldsymbol{v}}$

Statistical overview of the ranges of the physical properties of 38 longitudinal oscillations detected at the base of large coronal loops (1 $R_s = 700$ Mm).

Loop oscillations in solar corona

In agreement with higher dissipation rate, due to **thermal conduction** and **viscosity** when T is higher.

Wang et al., 2003

In agreement with dissipation by **phase mixing** for kink-mode oscillations.

Ofman & Aschwanden, 2002

Summary

- Corona, a restless, complex nonuniform plasma and radiation environment dominated by the solar magnetic field
- Evidence for quasi-periodic stiff oscillations and waves through the entire solar atmosphere and in loops
- Many small-scale brightenings in a wide range of wavelengths and with a power-law distribution in energy

Microscopic heating mechanism is unknown!