The microstate of the solar corona and the solar wind

- Radial gradients of kinetic temperatures
- Velocity distribution functions
- Ion composition and suprathermal electrons
- Coulomb collisions in the solar wind
- Waves and plasma microinstabilities
- Diffusion and wave-particle interaction

Length scales in the solar wind

Macrostructure - fluid scales

 Heliocentric distance: 	r	150 Gm (1AU)				
Solar radius:	R _s	696000 km (215 R _s)				
 Alfvén waves: 	λ	30 - 100 Mm				
Microstructure - kinetic scales						
 Coulomb free path: 	I.	~ 0.1 - 10 AU				
 Ion inertial length: 	V_A/Ω_p (c/d	ω _p) ~ 100 km				
Ion gyroradius:	r _L	~ 50 km				
Debye length:	λ_{D}	~ 10 m				
 Helios spacecraft: 	d	~ 3 m				

Microscales vary with solar distance!

Proton temperature at coronal base

Marsch et al., A&A, **359**, 381, 2000

Electron temperature in the corona

Temperature profiles in the corona and fast solar wind

Cranmer et al., Ap.J., 2000; Marsch, 1991

Ion differential streaming

• Helios:

Alpha particles are faster than the protons!

- In fast streams the differential velocity $\Delta \underline{V} \leq \underline{V}_A$
- Ulysses:

Heavy ions travel at alpha-particle speed!

Marsch et al., JGR, **87**, 52, 1982

Proton and electron temperatures

Oxygen freeze-in temperature

Geiss et al., 1996

Ulysses SWICS

Correlations between wind speed and corona temperature

Velocity distribution functions

Statistical description: $f_i(\mathbf{x}, \mathbf{v}, t) d^3x d^3v$,

gives the probability to find a particle of species j with a velocity \mathbf{v} at location \mathbf{x} at time t in the 6-dimensional phase space.

Local thermodynamic equilibrium:

 $f_j^{M}(\mathbf{x}, \mathbf{v}, t) = n_j (2\pi v_j)^{-3/2} \exp[-(\mathbf{v} - \mathbf{U}_j)^2/(2v_j)^2],$

with number density, n_j , thermal speed, $v_j = (k_B T_i/m_i)^{1/2}$, temperature T_i , and bulk velocity, U_i , of species j.

Dynamics in phase space: Vlasov/Boltzmann kinetic equation

Proton velocity distributions

- Temperature anisotropies
- Ion beams
- Plasma instabilities
- Interplanetary heating

Plasma measurements made at 10 s resolution (> 0.29 AU from the Sun)

Helios

Marsch et al., JGR, 87, 52, 1982

Ion composition of the solar wind

Grünwaldt et al. (CELIAS on SOHO)

Kinetic processes in the solar corona and solar wind I

- Plasma is multi-component and nonuniform
- \rightarrow complexity
- Plasma has low density
- $\rightarrow\,$ deviations from local thermal equilibrium
- → suprathermal particles (electron strahl)
- → global boundaries are reflected locally

Problem: Thermodynamics of the plasma, which is far from equilibrium.....

Electron energy spectrum

IMP spacecraft

populations:Core (96%)

Two solar wind

• Halo (4%)

Core: local, collisional, **bound** by electrostatic potential

Halo: global, collisionless, free to escape (exopsheric)

Feldman et al., JGR, 80, 4181, 1975

Electron velocity distributions

Solar wind electrons: Core-halo evolution

Halo is relatively increasing while strahl is diminishing.

Normalized core remains constant while halo is relatively increasing.

Maksimovic et al., JGR 2005

Scattering by meso-scale magnetic structures

Fluid description

Moments of the Vlasov/Boltzmann equation:

Density:	$n_j = \int d^3 v f_j(\mathbf{x}, \mathbf{v}, t)$
Flow velocity:	$\mathbf{U}_{j} = 1/n_{j} \int d^{3}v f_{j}(\mathbf{x}, \mathbf{v}, t) \mathbf{v}$
Thermal speed:	$v_j^2 = 1/(3n_j) \int d^3v f_j(x, v, t) (v - U_j)^2$
Temperature:	$T_j = m_j v_j^2 / k_B$
Heat flux:	$Q_j = 1/2m_j \int d^3v f_j(\mathbf{x}, \mathbf{v}, t) (\mathbf{v} - \mathbf{U}_j) (\mathbf{v} - \mathbf{U}_j)^2$

Electron heat conduction

McComas et al., GRL, 19, 1291, 1992

Theoretical description

Boltzmann-Vlasov kinetic equations for protons, alpha-particles (4%), minor ions and electrons

Distribution functions

Kinetic equations

- + Coulomb collisions (Landau)
- + Wave-particle interactions
- + Micro-instabilities (Quasilinear)
- + Boundary conditions

→ Particle velocity distributions and field power spectra

Multi-Fluid (MHD) equations

Moments

- + Collision terms
- + Wave (bulk) forces
- + Energy addition
- + Boundary conditions
- → Single/multi fluid parameters

Proton Coulomb collision statistics

Livi et al., JGR, **91**, 8045, 1986

- Fast protons are collisionless!
- Slow protons show collision effects!

Proton heat flux regulation

Coulomb collisions and quasilinear wave-particle interactions

$$\frac{\delta f}{\delta t} = \frac{\partial}{\partial \mathbf{v}} \cdot (-\mathbf{A} + \mathcal{D} \cdot \frac{\partial}{\partial \mathbf{v}})f$$

Coulomb collisions and/or wave-particle interactions are represented by a second-order differential operator, including the acceleration vector $\mathbf{A}(\mathbf{v})$ and diffusion tensor $D(\mathbf{v})$:

Parameter	Chromo -sphere	Corona (1R _s)	Solar wind (1AU)
n _e (cm ⁻³)	10 ¹⁰	10 ⁷	10
Т _е (К)	6-10 10 ³	1-2 10 ⁶	10 ⁵
λ _e (km)	10	1000	10 ⁷

Coulomb collisions in slow wind

Coulomb collisions and electrons

Integration of Fokker-Planck equation

 Velocity filtration is weak!

Strahl formation
 by escape electrons

 Core bound by electric field

Lie-Svendson et al., JGR, **102**, 4701, 1997

Wave-particle interactions

Dispersion relation using measured or model distribution functions $f(\underline{v})$, e.g. for electrostatic waves:

$$\varepsilon_{L}(\underline{k},\omega) = 0 \rightarrow \omega(\underline{k}) = \omega_{r}(\underline{k}) + i\gamma(\underline{k})$$

Dielectric constant is functional of $f(\underline{v})$, which may when being non-Maxwellian contain free energy for wave excitation.

 $\gamma(\underline{k}) > 0 \rightarrow$ micro-instability.....

Resonant particles:

 $\omega(\underline{k}) - \underline{k} \cdot \underline{v} = 0$ (Landau resonance) $\omega(\underline{k}) - \underline{k} \cdot \underline{v} = \pm \Omega_{i}$ (cyclotron resonance)

→ Energy and momentum exchange between waves and particles. Quasi-linear or non-linear relaxation.....

Heating of protons by cyclotron and Landau resonance

Ion cyclotron waves

Parallel in- and outward propagation

STEREO

Jian et al. ApJ, 2009

Helios

Jian and Russell,

and Astrophysics

Decadal Survey,

Papers, no. 254,

Science White

2009

The Astronomy

q

8

- Halo electrons carry heat flux
- Heat flux varies with <u>B</u> or <u>V</u>_A
- Whistler instability regulates drift

Sime et al., JGR, 1994

Kinetic processes in the solar corona and solar wind II

- Plasma is multi-component and nonuniform
- \rightarrow multi-fluid or kinetic physics is required
- Plasma is tenuous and turbulent
- \rightarrow free energy for micro-instabilities
- → resonant wave-particle interactions
- \rightarrow collisions described by Fokker-Planck operator

Problem: Transport properties of the plasma, which involves multiple scales.....

Proton temperature anisotropy

 Measured and modelled proton velocity distribution

- Growth of ioncyclotron waves!
- Anisotropy-driven instability by large perpendicular $T_{\rm \perp}$

 $ω \approx 0.5 \Omega_p$ $\gamma \approx 0.05 \Omega_p$

Marsch, 1991

Correlation of anisotropy with Alfvén-cyclotron wave power

Wave regulation of proton beam

- Measured and modelled velocity distribution
- Growth of fast mode waves!
- Beam-driven instability, large drift speed

 $\omega \approx 0.4 \Omega_{\rm p}$ $\gamma \approx 0.06 \Omega_{\rm p}$

Marsch, 1991

Beam drift versus core plasma beta

• Origin of the beam not yet explained (mirror force in corona, Coulomb collisions)

 Quasilinear resonant pitch-angle diffusion determines the kinetics (thermodynamics) of solar wind protons.

• Proton beam drift speed is regulated by wave-particle interactions and depends on the plasma beta.

• The dotted (dashed) line corresponds to a relative beam density of 0.05 (0.2).

 $V_d/V_A = (2.16 \pm 0.03) \beta_{||c}^{(0.28 \pm 0.01)}$

(empirical fit to data given by the dot-dash line)

Tu, Marsch and Qin, JGR, **109**, 2004

Kinetic plasma instabilities

- Observed velocity distributions at margin of stability
- Selfconsistent quasior non-linear effects not well understood
- Wave-particle interactions are the key to understand ion kinetics in corona and solar wind!

Marsch, 1991; Gary, Space Science Rev., **56**, 373, 1991

Free energy source
Ion beams, electron heat flux
Temperature anisotropy
Electron heat
flux
Ion beams,
differential

Quasi-linear (pitch-angle) diffusion

Diffusion equation

$$\begin{split} \frac{\partial}{\partial t} f_j(V_{\perp}, V_{\parallel}, t) &= \sum_M \sum_{s=-\infty}^{+\infty} \frac{1}{(2\pi)^3} \int_{-\infty}^{+\infty} d^3 k \, \widehat{\mathcal{B}}_M(\mathbf{k}) \\ &\times \frac{1}{V_{\perp}} \frac{\partial}{\partial \alpha} \left(V_{\perp} \nu_j(\mathbf{k}, s; V_{\parallel}, V_{\perp}) \frac{\partial}{\partial \alpha} f_j(V_{\perp}, V_{\parallel}, t) \right) \end{split}$$

Pitch-angle gradient in wave frame

$$rac{\partial}{\partial lpha} = V_{\perp} rac{\partial}{\partial V_{\parallel}} - \left(V_{\parallel} - rac{\omega_M(\mathbf{k})}{k_{\parallel}}
ight) rac{\partial}{\partial V_{\perp}}$$

Kennel and Engelmann, Phys. Fluids, **9**, 2377, 1966

Pitch-angle diffusion of protons

Proton core heating and beam formation

VDFs as obtained by numerical simulation of the decay of Alfvén-cyclotron waves and the related ion kinetics

Contour plots of the proton VDF in the v_x - v_z -plane for the dispersive-wave case at four instants of time. The color coding of the contours corresponds, respectively, to 75 (dark red), 50 (red), 10 (yellow) percent of the maximum.

J.A. Araneda, E. Marsch, and A.F. Viñas, Phys. Rev. Lett., 100, 125003, 2008

Summary

• In-situ ion and electron measurements indicate strong deviations from local (collisional) thermal equilibrium

• Wave-particle interactions and micro-instabilities regulate the kinetic features of particle velocity distributions

• Kinetic models are required to describe the essential features of the plasma in the solar wind

• The non-equilibrium thermodynamics in the tenuous solar wind involve particle interaction with micro-turbulent fields

• Wave energy transport as well as cascading and dissipation in the kinetic domain are still not well understood