Structures, waves and turbulence in the heliosphere

- The inner heliosphere, structure and dynamics
- Fluctuations: scales and parameters
- Magnetoacoustic and Alfvénic fluctuations
- Turbulence spectra and radial evolution
- Ideal MHD invariants and dissipation
- Cross-helicity, anisotropy, compressibility
- Scaling and intermittency

The Sun's open magnetic field lines

Mikic & Linker, 1999

Waves and turbulence on open fields

- Photospheric flux tubes are **shaken** by an observed spectrum of horizontal motions.
- Alfvén waves propagate along the field, and may partly reflect back down.
- Nonlinear couplings force a (perpendicular?) cascade, terminated by damping.

(Heinemann & Olbert 1980; Hollweg 1981, 1986; Velli 1993; Matthaeus et al. 1999; Dmitruk et al. 2001, 2002; Cranmer & van Ballegooijen 2003, 2005; Verdini et al. 2005; Oughton et al. 2006; many others)

Solar wind stream structure and heliospheric current sheet

Stream interaction region

Dynamic processes in interplanetary space

- Wave amplitude steepening (n~ r⁻²)
- Compression and rarefaction
- Velocity shear
- Nonlinearity by advection $(\underline{V} \bullet \nabla) \underline{V}$
- Shock formation (co-rotating)

Schwenn, 1990

Spatial and temporal scales

Phenomenon	Frequency (s ⁻¹)	Period (day)	Speed (km/s)
Solar rotation:	4.6 10 ⁻⁷	25	2
Solar wind expansi	on: 5 - 2 10 ⁻⁶	2 - 6	800 - 250
Alfvén waves:	3 10 -4	1/24	50 (1AU)
Ion-cyclotron wave	es: 1 - 0.1	1 (s)	(V _A) 50

Turbulent cascade:

generation + transport \rightarrow inertial range \rightarrow kinetic range + dissipation

Fluctuations

Typical day in April 1995 of Ulysses plasma and field observations in the polar (42^o north) heliosphere at 1.4 AU

 Sharp changes in field direction

- Large Component variations
- Weakly compressive fluctuations

Horbury & Tsurutani, 2001

Phase velocities of MHD modes

$$\omega^4 - \omega^2 (kc_{ms})^2 + (kc_s)^2 (k \cdot V_A)^2 = 0$$

$$\omega = \mathbf{k} \cdot \mathbf{V}_{A}$$

Weak turbulence, superposition of magnetohydrodynamic waves

- Magnetosonic waves
 compressible
- parallel slow and fast
- perpendicular fast

 $C_{ms} = (C_s^2 + V_A^2)^{-1/2}$

• Alfvén wave incompressible parallel and oblique $V_A = B/(4\pi\rho)^{1/2}$

Broad band in k and random phases

Alfvénic fluctuations (Helios)

Neubauer et al., 1977

Alfvénic fluctuations (Ulysses)

Elsässer variables: $Z^{\pm} = V \pm V_A$ Turbulence energy: $e^{\pm} = 1/2 (Z^{\pm})^2$ Cross helicity: $\sigma_c = (e^+ - e^-)/(e^+ + e^-)$

Horbury & Tsurutani, 2001

Alfvénic fluctuations

Ulysses observed many such waves (4-5 per hour) in fast wind over the poles:

- Arc-polarized waves
- Phase-steepened

Rotational discontinuity:

 $\Delta \mathbf{V} = \pm \Delta \mathbf{V}_{\mathbf{A}}$

Finite jumps in velocities over gyrokinetic scales

Tsurutani et al., 1997

Planar Waves

Spherical Waves

Circular Polarization

a)

Elliptical Polarization

ЪZ

ř

Arc-polarized Alfvén waves

Slowly rotating Alfvén wave lasts about 15 minutes

Rotational discontinuity RD lasts only 3 minutes

Ulysses Heliographic Latitude = 80.2° 10^{0}

Tsurutani et al., 1997

Alfvén waves and solar wind streams in the ecliptic plane

e± (km²s⁻²Hz⁻

e_n/e⁻

turbulence in slow streams

flux in fast

Developed

streams

isotropic

High

wave

Tu et al., GRL, **17**, 283, 1990

Frequency (HZ)

Alfvén waves in polar solar wind

Radial variation of e[±](r); wave amplitude at 1-h period is not sufficient to drive fast wind!

Bavassano et al., JGR, **105**, 15959, 2001

Elsässer variables: $\mathbf{Z}^{\pm} = \mathbf{V} \pm \mathbf{V}_{\mathbf{A}}$ Turbulence energy: $e^{\pm} = 1/2 \ (\mathbf{Z}^{\pm})^2$ Elsässer ratio: $\mathbf{r}_{e} = e^{-}/e^{+}$

Average values over 0.1 AU wide intervals of hourly variances of **Z**[±]

Anisotropy and dimension

"Maltese cross"

 Particle pitch-angle scattering is weaker than for isotropic MHD

Compressible
 fluctuations are
 described by 2-D MHD

Correlations: Alfvén waves and 2-D turbulence

Matthaeus et al., J. Geophys. Res., **95**, 20673, 1990

Two-component model

- Alfvén waves parallel to the mean field
- 2-dimensional turbulence perpendicular
- Convected structures (discontinuities) and shocks

Compressive fluctuations

Colour coding:

Correlation coefficient (per solar rotation) between total plasma pressure p_t and density n, and kinetic (thermal) p_k and magnetic p_m pressure, indicating magnetoacoustic slow mode type fluctuations.

Left scale:

Time, radial distance, and heliographic latitude of Ulysses.

Bavassano et al., Ann. Geophysicae., 2004

Compressive fluctuations in the solar wind

Marsch and Tu, JGR, **95**, 8211, 1990

Kolmogorov-type turbulence

Solar wind turbulence

Parameter	Coronal Hole (open)	Current sheet (closed)
Alfvén waves: Density fluctuations: Magnetic/kinetic turbulent energy:	yes weak (<3%) ≅ 1	no intense (>10%) > 1
Spectral slope:	flat (-1)	steep (-5/3)
Wind speed: T _p (T _e): Wave heating:	high high (low) strong	low low (high) weak

Magnetic field power spectrum

• Power laws with index of about -1, -5/3 and -3

- Abrupt decline at f_c indicates cyclotron absorption
- Steep spectrum at high frequencies above 2 Hz is mainly due to whistler waves

Denskat et al., JGR 54, 60, 1983

Turbulence in the heliosphere

Questions and problems:

- Nature and origin of the fluctuations
- Distribution and spectral transfer of turbulent energy
- Spatial evolution with heliocentric distance
- Intermittency and microphysics of dissipation

Alfvénic correlations: Alfvénicity (cross helicity) $\sigma_{c} = (e^{+} - e^{-})/(e^{+} + e^{-}) = 2 < \delta V \cdot \delta V_{A} > / < (\delta V)^{2} + (\delta V_{A})^{2} >$ Magnetic versus kinetic energy: Alfvén ratio $r_{A} = e_{V}/e_{B} = < (\delta V)^{2} > / < (\delta V_{A})^{2} >$

Scaling, non-linear couplings and cascading?

Evolution of cross helicity

 $\sigma_{c} = 2 < \delta \mathbf{V} \cdot \delta \mathbf{V}_{A} > /(\delta \mathbf{V}^{2} + \delta \mathbf{V}_{A}^{2}) = (e^{+} - e^{-})/(e^{+} + e^{-})$

Alfvénic correlations decay radially!

Roberts et al., J. Geophys. Res. **92**, 12023, 1987

Marsch and Tu, J. Geophys. Res., 95, 8211, 1990

Spectrum

Alfvén ratio

Spectral indices and spatial evolution of turbulence

slow <-> fast wind

Marsch and Tu, JGR, **95**, 8211, 1990

Power spectrum evolution

Horbury et al., JGR 101, 405, 1996

Turbulence spectrum: $e^{\pm}(f) = 1/2 \ (\delta \mathbf{Z}^{\pm})^2 \sim (f/f_0)^{-\alpha}$

Spectral evolution and turbulent cascade: slope steepening

Spectral evolution of Alfvénic fluctuations

- Steepening by cascading
- Ion heating by wave sweeping
- Dissipation by wave absorption

Tu and Marsch, J. Geophys. Res. , **100**, 12323 ,1995

Kolmogorov phenomenology for isotropic homogeneous turbulence

Energy cascade:

Turbulent energy (per unit mass density), $e_l \approx (\delta Z)^2$, at scale l is transported by a hierarchy of turbulent eddies of ever decreasing sizes to the dissipation range at scale l_D .

energy transfer rate: $\epsilon_l \sim (\delta Z_l)^2 / \tau$ turnover time: $\tau \sim l / \delta Z_l$ wavenumber: $k \sim 1/l$ energy spectrum: $E_k k \sim (\delta Z_l)^2$

$$\epsilon_{\ell} \sim \delta Z/\ell \ (\delta Z)^2 \sim E_k^{3/2} k^{5/2}$$

Scale invariance: $\varepsilon_{\ell} = \varepsilon$ (dissipation rate) --> $E_k \sim k^{-5/3}$

Spectral properties of 3-D magnetohydrodynamic turbulence

Kraichnan, 1965

Direct numerical simulation with a spectral code with 512³ modes

Compensated normalized spectrum shows Kolmogorov scaling and sheet-like dissipative structures

Müller and Biskamp, Phys. Rev. Lett., 84, 475, 2000

MHD turbulence dissipation through absorption of plasma waves

 Viscous and Ohmic dissipation in collisionless plasma (coronal holes and fast solar wind) is not important

- Waves become dispersive (at high frequencies beyond MHD) in the multi-fluid or kinetic regime.
- Ouestion: KAW or Alfvén-cyclotron dissipation?

 Turbulence dissipation involves absorption (or emission by instability) of kinetic plasma waves!

 Cascading and spectral transfer of wave and turbulence energy is not well understood in the dispersive dissipation domain!

Anisotropic MHD cascade

- Simulations and analytic models predict cascade from small to large k_{\perp} , leaving k_{\parallel} unchanged.
- Critical balance assumes $\omega_A = k_{||}V_A \cong \omega_{NL} = k_{\perp} \delta V$ (Goldreich and Sridar, ApJ. 1995, 1997)
- Kinetic Alfven wave (KAW) with large k_⊥ does not necessarily have a high ω_A.
- In a low-beta plasma, KAWs are Landau-damped, heating electrons preferentially!

Isocontours of model spectrum E_k

Cranmer, 2010

Cyclotron wave generation

Base generation by, e.g., "microflare" reconnection in the lanes that border convection cells (see Axford and McKenzie, 1997).

Secondary generation by low-frequency Alfven waves being converted by parallel cascading into cyclotron waves gradually in the corona.

Structure function and scaling

Voyager 2 near 8.5 AU DAY 186 - 191, 1981 24.00 ասկառությունը արդերությունը անդերությունը հետությունը հետությունը հետությունը հետությունը հետությունը հետությո 22.00 Ξ 20 14 20.00 Ń 10 15.00 ٩ D 18.00 ~ 14.00 12.00 (1++) 10.00 8.00 \geq 6.00 4.00 log₁₀ 2.00 0.00 -2.00 -4.00 2.00 1.00 0.00 -1.00 log₁₀ (τ(hours))

 $S^{p}(\tau) = < |V(\tau)-V(0)|^{p} > = \tau^{s(p)}$

 $s(p) = 1 - ln[P^{p/3} + (1-P)^{p/3}]$ P-model of fractal cascade; P=1/2 no intermittency

Burlaga, JGR, 96, 5847, 1991

Intermittency at the bowshock

- Kolmogorov -5/3 spectra
- Non-Gaussians tails (F=3.5 4.6)

Four-point CLUSTER data

Narita et al., PRL., 97, 191101, 2006

Probability distribution functions

Non-Gaussian statistics at small scales!

Marsch and Tu, Annales Geophys., **12**, 1127, 1994

Summary

- Solar wind is a weakly anisotropic turbulent magnetofluid
- Alfvénic fluctuations dominate, with an admixture of weak compressive (magnetosonic) fluctuations
- Turbulence develops towards Kolmogorov spectra, but intermittency prevails at small (below hourly) scales
- Alfvén ratio, cross-helicity, anisotropy evolve radially, as does the average energy spectrum
- Origin of the fluctuations: coronal sources for Alfvén waves, compressive waves from pressure imbalances and stream interactions, cascading by velocity shear
- Structure functions and probability distribution reveal non-gaussian statistics