Modern observational techniques for coronal studies

MAX-PLANCK-GESELLSCHAFT

Hardi Peter

solar eclipse, 11.8.1999, Wendy Carlos and John Kern

The spectrum of the Sun

observing in radio or EUV & X-rays / 1500 Å: → the corona seen in front of dark disk!
→ "better" than eclipses!

The Sun in EUV and radio

11.04.1999

EUV corona, Fe IX/X 171 Å EIT / SOHO spatial resolution ~5"

emission measure / density at ~10⁶ K

radio corona @ 5.0 GHz (6 cm) Stephen White, Very Large Array (VLA) spatial resolution ~12" (8400 km on the Sun) hot ~10⁶ K / presence of strong B red: green: less hot but denser cool < 30 000 K material blue:

Image courtesy of NRAO/AUI and Image courtesy of Stephen White, University of Maryland, and of NRAO/AUI.

Major coronal facilities (space based)

Yohkoh

– hard X-rays (HXT) and soft soft X-rays (SXT): > several MK

► SoHO @ L1

- EIT: imaging in wavelength bands (100-300 Å): 1 2 MK
- SUMER: EUV spectrometer (700-1600 Å): 6000 K 2 MK
- CDS: EUV spectrometer (100-700 Å): 0.1 5 MK
- LASCO: 3 coronagraphs, white light + green line: $1.1 32 R_{Sun}$

TRACE polar orbit

– similar to EIT but higher spatial resolution, smaller FOV, higher cadence

► **STEREO** (Secchi imaging suite) stereoscopic view

- EUVI: similar to EIT
- Cor1/Cor2: similar to Lasco up to 15 R_{Sun}
- HI: heliospheric imager up to 70° FOV off-pointed from Sun (54°)

Hinode

- XRT: similar to Yohkoh with higher resolution 1 10 MK
- EIS: EUV fast scanning spectrometer (170–290 Å) 0.7 5 MK

► SDO

– AIA: "Super"-EIT: 4k x 4k detektor for full disk, 2 sec cadence

Solar A: Yohkoh

study hot parts of solar corona: – observations from X-rays to gamma-rays – detect very energetic radiation during flares

Fig. 1a. Schematic illustration of the optical concept and key elements of the SXT.

Fig. 1b. Exploded diagram of the SXT. Sub-assemblies mentioned in the text are identified.

Soft X-ray telescope (SXT):

- Wolter-type design
- full-disk images:
 1024² pixels
 - every 2 min
- partial readout down to 2 sec
- temperatures>2...3 MK
- diagnosics
 - T & ρ structure
 - dynamics of X-ray
 - 3D morphology

Hot, hotter, the hottest: Yohkoh flares

Temperature structure in large hot loops

different filters (foils) for soft X-rays: different transmission as function of temperature

→ derive temperature from filter ratios

Problem: many implicit assumptions

- static loop
- ionization equilibrium
- emission from same structures
- → is this inversion unique ?

Priest et al. (1998), Nat., 393, 545

Hinode/XRT: micro-flaring hot corona

- higher spatial resolution than Yohkoh
- ubiquitous small-scale reconnection ecents at coronal base

 \blacktriangleright example: reconnection \rightarrow jet \rightarrow loop

Solar and Heliospheric Observatory – SOHO

full solar observatory: 24/7 continuous observations

remote sensing:

photospheric *I, v, B* EUV imaging of corona EUV spectroscopy (chromosph., TR, corona)

in-situ observations:

particle fluxes and desities abundances magnetic fields

Magnetic field, super-granulation and the corona

Transition Region And Coronal Explorer – TRACE

Amazing details...

TRACE does not see the full Sun, but it shows amazing details in space and time

However: diagnostic value?

- inversion of coronal T ?
 - → to few coronal bands
- plasma flows ?
 - no line shifts

≈ 10⁶ K 9.11.2000

Scale height of the corona

hydrostatic pressure scale height:

 $H = \frac{k_{\rm B}T}{mg}$

@ 10⁶ K: H = 47 Mm

Why do loops seem to have a rather constant intensity ??

- >70 % of loops cannot be in hydrostatic equilibrium !!
 - → e.g. cooling loops
- of the 30 % that might be in equilibrium: most have to be heated at the foot points!

Why do we see coronal loops at TR-T ?

The dynamic ever-changing corona

10⁶ K – low corona

hot corona $- 1.3 \times 10^{6} \text{ K} / 10^{6} \text{ K}$

dynamic processes on **all** scales: from solar radius to resolution of current instrumentation

~5 hours

 10^4 K – "chromospheric" plasma and gradients removed – 10^4 K

STEREO: 3D imaging

Solar TErrestrial RElations Observatory

Start: 25.10.2006 two spacecraft:

Hierarchy of loops in active region

3D reconstruction of active region loop system using stereoscopic techniques

- identify loops from both viewing angles → 3D trajectories
- 2. simple 1D model for emission along loops
- 3. optimize to reconstruct observed emission
- 4. investigate spatial distribution of
 e.g. loop temperatures
 → hottest loops at heart of active region

Aschwanden (2008)

Coronagraph: SOHO / Lasco C1

traditionally: coronagraph has a single lens objective \rightarrow low straylight

C1 is first operating mirror coronagraph

roughness of the mirror \rightarrow can be handled theses days... problem:

advantage: - no occulter: but hole in a mirror - easy to get rid of solar disk light

- one can even use the solar disk light \rightarrow simultaneous corona & disk!

(not used with Lasco C1)

MICA – Mirror coronagraph for Argentina / flight spare of Lasco C1

Extracting the emission line corona

The corona – on disk and above limb

Lasco C1

EIT

Acceleration of the slow solar wind

SO

analyze time series of coronagraph images

- → acceleration of slow solar wind from magnetically closed corona
- → starts at \approx 3 R_{Sun}

STEREO / HI coronagraph

Comet Encke within Mercury orbit looses its tail during CME eruption

Maddock et al (2007)

EUV Spectroscopy: SOHO / SUMER

SUMER on the SOHO spacecraft

EUV-Spectrograph SUMER

Solar Ultraviolet Measurements of Emitted Radiation

spectral resolution: $\lambda \Delta \lambda \approx 30000$ wavelength range: 50 – 155 nm

spatial resolution: 2" (1" pixel) (1500 km)

covering temperatures on the Sun: $5000 - 10^7$ K

- dynamics and structure of the transition region from the chromosphere to the corona
- accuracy for Doppler shifts: ~ 2 km/s

SUMER optical design

SUMER: spectral range (1st order)

Full spectral frame and spectral windows

full frame:

1024 spectral pixels \approx 44 Å (1st order)

spectral window:

often 50 spectr. pxl \approx 2 Å (1st order) (or 25, 512, ...)

Problem:

sometimes windows not wide enough (telemetry...)

Images by raster procedure

Coronal heating and TR explosive events

- transient broadening of TR emission lines sometimes distinct emission peaks visible (e.g. Dere et al., 1989, Sol. Phys. 123, 41)
- interpreted as bi-directional jets after reconnection (e.g. Innes et al., 1997, Nat. 386, 811)
- explosive events are restricted to TR temperatures
- are they related to the dissipation of energy in the 3D MHD flux-braiding coronal models?

Doppler shifts in the low corona & TR

mean quiet Sun Doppler shifts at disk center

- net redshift in transition region
- net blueshift in corona
- in active region similar but with higher amplitude
- also found with solar-like stars

Hinode/EIS: coronal spectroscopy

Coronagraphic spectroscopy: SOHO / UVCS

(Ultra-Violet Coronagraphic Spectrograph)

- UVCS combines:
- coronagraph and an
- EUV spectrograph
- → spectroscopic analysis:
 - line widths / temperatures
 - outflow through Doppler dimming
 - hints on abundances

Ion-cyclotron heating in the outer corona

UVCS / SOHO

- very broad line profiles in outer corona e.g. 500 km/s = 500·10⁶ K in O VI !!
- Doppler-dimming analysis:
 - rapid acceleration
 - high ion perpendicular temperatures $T_{\perp} >> T_{\parallel}$

consistent with ion-cyclotron heating

Kohl et al (1998) ApJ 501, L127

Cranmer et al. (1998) ApJ 511,481

Abundances and solar wind origin

helmet streamer

- ➤ dark cavity in O VI :
 - → gravitational settling of oxygen / heavy elements ?
- steamer legs show abundances of slow solar wind [SUMER] (FIP-effect)

scenario:

- wind is leaving through legs
- inner part is static

Hinode/SOT: cool material feeding (?) corona

Solar Dynamics Observatory (SDO)

AIA

full disk imagers (4k x 4k detektors) for with high cadence (up to 2 sec) over full solar cycle

- HMI: visible light: intensity & vector magnetic field
- ► AIA: EUV in 8 bands covering 10 000 K 3 MK

spectral radiance observation:

EVE: from EUV to IR

Main scientific goals for the SDO mission:

- Driving of solar magnetic activity cycle
- Evolution of magnetic flux on surface

SOLAR ARRAYS

HIGH-GAIN ANTENNAS

- role of reconnection for large-scale fields, coronal heting and wind acceleration
- EUV variability and relation to magnetic cycle
- initiation of CMEs, flares anf filament eruption and their role for energetic particles
- relation of heliospheric magnetic field to solar surface
- forecast of solar activity, space weather and climate

Coronal magnetic fields

Schrijver & DeRosa (2003) Solar Phys. 212, 165

Magnetic field extrapolations do a pretty good job...

BUT:

- B is not potential or (nonlinear) force free everywhere!
- extrapolations assume a static magnetic field structure
- dynamic evolution of B during transient events
- ➢ we have to know what B really is
- Need for direct measurements of coronal magnetic fields

Direct coronagraphic observations

- **Problem:** \rightarrow *B* only where bright structures...
 - \rightarrow 3D structure of coronal field?!

Coronal IR spectropolarimetry

with Coronal Multichannel Polarimeter, CoMP (HAO) corona: Fe xiii (10747 Å & 10798 Å) chromosphere: He I (10830 Å) \blacktriangleright measures full stokes Vector \rightarrow reconstruction of B 0.00 5.00 10.00 -90.00-45.00 0.00 45.00 90.00 CoMP Mean Azimuth [Degrees] CoMP Mean Doppler Velocity [km/s] -1200 -1000 -800 -600 -400 -1200 -1000 -800 -600-400Tomczyk et al (2007) Sci 317,1192

3D magnetic fields of emerging flux

Summary / lessons learnt

the corona dominates the emission in X-rays, EUV and radio

- ➢ soft X-rays
 - hot coronal emission > 3 MK
 - flares, quiescent hot coronal loops
- EUV imaging
 - evolution of 1–2 MK corona
 - corona is very dynamic and fine structured
- coronagraphic imaging
 - coronal mass ejections
 - onset of solar wind

EUV spectroscopy

- dynamics from average line shifts to explosive events
- temperatures, densities, abundances
- coronagraphic spectroscopy
 - solar wind acceleration and heating
 - solar wind origin
- coronal magnetic fields
 - this is the REAL challenge
 - some information from coronagraphic or IR observations

Modern observational techniques for coronal studies

(Yohkoh, Hinode/XRT)

(TRACE, EIT/SOHO, SDO)

(Lasco/SOHO, HAO/Mauna Loa)

(SUMER, CDS/SOHO, Hinode/EIS)

(UVCS/SOHO)

(VTT/Tenerife, SacPeak ESF)