IMPRS SSP, March 2003 Dynamo Theory, Part 2

The Solar Dynamo

Dieter Schmitt (Katlenburg-Lindau)

Mean-field dynamo models The solar cycle Long-term variability

1. Mean-field dynamo models

Mean-field vs. dynamical 3D models

1.1 Dynamo equation

Spherical coordinates (r, ϑ, φ)

axisymmetric mean fields B, v, $\partial/\partial \varphi = 0$, azimuthal averages kinematic, i.e. v given

$$\begin{aligned} \frac{\partial B}{\partial t} &= \nabla \times (\mathbf{v} \times \mathbf{B} + \alpha \mathbf{B} - \eta_T \nabla \times \mathbf{B}) & \text{mean induction equation} \\ \langle \mathbf{v}' \times \mathbf{B}' \rangle &= \alpha \mathbf{B} - \beta \nabla \times \mathbf{B}, \quad \eta_T = \eta_m + \beta \\ \alpha &\approx -\tau \langle \mathbf{v}' \cdot (\nabla \times \mathbf{v}') \rangle / 3, \quad \beta &\approx \tau \langle \mathbf{v}'^2 \rangle / 3 & \text{for isotropic turbulence} \\ \mathbf{B} &= \mathbf{B}_p + \mathbf{B}_t = \nabla \times (0, 0, A_{\varphi}) + (0, 0, B_{\varphi}), \quad \mathbf{B} = \mathbf{B}_{\varphi}, \quad \mathbf{A} = A_{\varphi} \\ \mathbf{v} &= \mathbf{v}_p + \mathbf{v}_t = \nabla \times (0, 0, \psi/r \sin \vartheta) + (0, 0, \Omega(r, \vartheta)r \sin \vartheta) \\ \frac{\partial \mathbf{B}_p}{\partial t} &= \nabla \times (\mathbf{v}_p \times \mathbf{B}_p + \alpha \mathbf{B}_t - \eta_T \nabla \times \mathbf{B}_p) \\ \frac{\partial \mathbf{B}_t}{\partial t} &= \nabla \times (\mathbf{v}_p \times \mathbf{B}_t + \mathbf{v}_t \times \mathbf{B}_p + \alpha \mathbf{B}_p - \eta_T \nabla \times \mathbf{B}_t) \\ \mathbf{v}_p &= 0, \ \alpha = \eta_T = \text{const}, \ \nabla \times \nabla \times (F \mathbf{e}_{\varphi}) = -\Delta_1 F \mathbf{e}_{\varphi}, \ \Delta_1 = \Delta - \frac{1}{r^2 \sin^2 \vartheta} \end{aligned}$$

IMPRS, 3/2003		
The Solar Dynamo		
Title	page	
Mean-field models		
The solar cycle		
Long-term variability		
Page 2 of 43		
44	••	
•	►	
Back	Close	
Full Screen		

$$\frac{\partial B}{\partial t} = r \sin \vartheta (\nabla \times A) \cdot \nabla \Omega - \alpha \Delta_1 A + \eta_T \Delta_1 B$$
$$\frac{\partial A}{\partial t} = \alpha B + \eta_T \Delta_1 A$$

rigid rotation has no effect

no dynamo if $\alpha = 0$

$$\frac{\alpha - \text{term}}{\nabla \Omega - \text{term}} \approx \frac{\alpha_0}{|\nabla \Omega| L^2} \begin{cases} \gg 1 & \alpha^2 - \text{dynamo} \\ \ll 1 & \alpha \Omega - \text{dynamo} \end{cases}$$

Sun:
$$|\nabla \Omega| L^2 \approx \Delta v \approx 400 \text{ ms}^{-1}, \quad \alpha \approx v_{\text{rms}}^{\prime 2} \tau / L \approx 1 \text{ ms}^{-1}$$
$$\sim \alpha \Omega - \text{dynamo}$$

$$\frac{|\boldsymbol{B}_t|}{|\boldsymbol{B}_p|} \approx \left(\frac{|\boldsymbol{\nabla}\Omega|L^2}{\alpha_0}\right)^{1/2} \approx 20 \quad \text{toroidal field dominates}$$

bipolar regions on surface erupted toroidal field

 \sim EW orientation

The Solar Dynamo Dieter Schmitt		
Title pag	е	
Mean-field models		
The solar cycle		
Long-term variability		
Page 3 of 43		
44	••	
•	Þ	
Back	Close	
Full Screen		

IMPRS, 3/2003

1.2 Dynamo effects

• Differential rotation

• Helical convection / α -effect

1.3 $\alpha \Omega$ -dynamo

periodically alternating field, here antisymmetric with respect to equator

The Solar Dynamo **Dieter Schmitt** Title page Mean-field models The solar cycle Long-term variability Page 5 of 43 44 ◄ Back Close **Full Screen**

IMPRS, 3/2003

1.4 Dynamo waves

Consider $\alpha \Omega$ -equations locally Cartesian coordinates (x, y, z) corresponding to (ϑ, φ, r) $\alpha = \text{const}, \eta_T = \text{const}, \mathbf{v} = (0, \Omega Z, 0)$ with $\Omega = \text{const}$ $B_{t} = (0, B(x, t), 0), B_{p} = (0, 0, \partial A(x, t)/\partial x)$ $\dot{B} = \Omega A' + \eta_{\tau} B'', \quad \dot{A} = \alpha B + \eta_{\tau} A'', \quad = \partial/\partial t, \quad ' = \partial/\partial x$ ansatz $(B, A) = (B_0, A_0) \exp[i(\omega t + kx)]$ dispersion relation $(i\omega + \eta_T k^2)^2 = i k \Omega \alpha$ assume $\alpha \Omega < 0$, e.g. $\alpha > 0$, $\Omega < 0$ and take k > 0 $\omega = i \eta_{\tau} k^2 - (1 + i) |k \alpha \Omega/2|^{1/2}$ (Parker, 1955) growth rate $-\omega_l = -\eta_T k^2 + |k\alpha\Omega/2|^{1/2} \ge 0$ for $|k\alpha\Omega/2|^{1/2} \ge \eta_{\tau}k^2$: inductive effects must exceed threshold $\omega_{R} = -|k\alpha\Omega/2|^{1/2} < 0$: wave propagation in positive x-direction identical result with k < 0

if $\alpha \Omega > 0$ wave propagation in negative *x*-direction

IMPRS, 3/2003		
The Solar Dynamo Dieter Schmitt		
Title page		
Mean-field models		
The solar cycle		
Long-term variability		
Page 6 of 43		
44	••	
•	►	
Back	Close	
Full Screen		

In general:

wave propagates along surfaces of constant rotation (Yoshimura, 1975)

direction of propagation depends on sign($\alpha \Omega$) period geometric mean of $(k\alpha)^{-1}$ and Ω^{-1} in the critical case $(\eta_T k^2)^{-1}$, decreasing with increasing excitation

1.5 Dynamo number

$$\begin{split} \Omega &= \Omega_0 \tilde{\Omega}, \quad \alpha = \alpha_0 \tilde{\alpha}, \quad t = \frac{R^2}{\eta_T} \tilde{t}, \quad B = B_0 \tilde{B}, \quad A = R B_0 \tilde{A} \\ \tilde{A} &= \frac{\Omega_0 R^2}{\eta_T} \tilde{A} \\ \frac{\partial B}{\partial t} &= r \sin \vartheta (\nabla \times A) \cdot \nabla \Omega + \Delta_1 B \\ \frac{\partial A}{\partial t} &= P \alpha B + \Delta_1 A \\ \end{split}$$
$$\begin{split} P &= R_\alpha R_\Omega = \frac{\alpha_0 R}{\eta_T} \cdot \frac{\Omega_0 R^2}{\eta_T} \quad \text{dynamo number} \end{split}, \quad B_t / B_\rho \approx (R_\Omega / R_\alpha)^{1/2} \end{split}$$

1.6 $\alpha \Omega$ dynamo modes

bounded $\alpha \Omega$ dynamo solutions, dimensionless

 $\begin{aligned} \alpha &= \alpha_0 \cos x, \quad \partial u_y / \partial z = G_0 \sin x \quad \text{dynamo effects} \\ \dot{A} &= P \cos xB + A'', \quad \dot{B} = \sin xA' + B'' \quad \text{dynamo equations} \\ P &= R_\alpha R_\Omega = \frac{\alpha_0 L}{\eta_\tau} \cdot \frac{G_0 L^2}{\eta_\tau} \quad \text{dynamo number} \\ \text{boundary conditions, } L &= \pi/2 \\ & \downarrow & & \\ 0 & \pi/2 & \pi \\ \text{North Pole} & \text{Equator} & \text{South Pole} \\ x &= 0 : A = B = 0 \\ x &= \pi : A = B = 0 \end{aligned}$

 $x = \pi/2$: antisymmetric solution, dipolar: A' = B = 0symmetric solution, quadrupolar: A = B' = 0

now antisymmetric solution

Free decay:

 $\dot{A} = A'', \quad \dot{B} = B''$ $A_n = e^{\omega_n t} \sin nx \quad \text{with} \quad \omega_n = -n^2, \quad n = 1, 3, 5, \dots$ $B_n = e^{\omega_n t} \sin nx \quad \text{with} \quad \omega_n = -n^2, \quad n = 2, 4, 6, \dots$

Eigenvalue problem:

$$\dot{A} = P \cos xB + A^{\prime\prime}, \quad \dot{B} = \sin xA^{\prime} + B^{\prime\prime}$$

expansion in decay modes (complete, orthogonal, satisfy b.c.)

$$A = e^{\omega t} \sum_{n=1,3,5,...} a_n \sin nx, \quad B = e^{\omega t} \sum_{n=2,4,6,...} b_n \sin nx$$

$$\sin x \cos nx = 1/2 \left[\sin(n+1)x - \sin(n-1)x \right]$$

$$\cos x \sin nx = 1/2 \left[\sin(n+1)x + \sin(n-1)x \right]$$

$$\int_0^{\pi/2} \sin nx \sin mx \, dx = \pi/4 \, \delta_{nm}$$

$$\omega a_m = P/2(b_{m-1} + b_{m+1}) - m^2 a_m,$$
 m odd
 $\omega b_m = 1/2((m-1)a_{m-1} - (m+1)a_{m+1}) - m^2 b_m,$ m even

$$\omega \begin{pmatrix} a_1 \\ b_2 \\ a_3 \\ b_4 \\ \vdots \end{pmatrix} = \begin{pmatrix} -1 & P/2 \\ 1/2 & -4 & -3/2 \\ P/2 & -9 & P/2 \\ 3/2 & -16 & -5/2 \\ & & \ddots \end{pmatrix} \begin{pmatrix} a_1 \\ b_2 \\ a_3 \\ b_4 \\ \vdots \end{pmatrix}$$

vary *P* until $\omega_R = 0$: P_{crit}

IMPRS, 3/2003		
The Solar Dynamo Dieter Schmitt		
Title page		
Mean-field models		
The solar cycle		
Long-term variability		
Page 9 of 43		
44	••	
•	►	
Back	Close	
Full Screen		

Dipole: antisymmetric with respect to equator

Pcpublic/schmitt/dynamo/dynewp.f and dynew.f

Exercise: find critical dynamo numbers for quadrupole, symmetric with respect to equator

IMPRS, 3/2003		
The Solar Dynamo		
Dieter	Schmitt	
Title	e page	
Mean-field models		
The solar cycle		
Long-term variability		
_		
Page 10 of 43		
44	••	
•	►	
Back	Close	
Full Screen		

1.7 Spherical $\alpha \Omega$ solutions

(Stix 1976)

The Solar Dynamo **Dieter Schmitt** Title page Mean-field models The solar cycle Long-term variability Page 11 of 43 44 \blacktriangleright ◄ ► Close Back Full Screen

IMPRS, 3/2003

theoretical butterfly diagram

(Krause and Steenbeck 1969)

1.8 Nonlinear effects

Linear theory:

exponential growth for $P > P_{crit}$, thus often $P = P_{crit}$ used, further B = |B| not determined nonlinear effects through Lorentz force or flux loss, especially for $B \gtrsim B_{eq}$ with $B_{eq}^2/8\pi = 1/2 \rho u_{rms}^2$ Lenz law: reduction of induction effect heuristic approaches, partly backed by mean field theory $\langle F_{Lor} \rangle = j \times B + \langle j' \times B' \rangle \rightarrow v \rightarrow \Omega$ $F'_{Lor} = j \times B' + j' \times B \rightarrow v' \rightarrow \alpha$

α -quenching:

 $\alpha = \alpha_0 f(B), f$ decreasing with increasing B, often $f(B) = 1 - B^2/B_c^2$ or $f(B) = 1/(1 + B^2/B_c^2)$ or $f(B) = B_c^3/B^3$ with $B_c \approx B_{eq}$ or $B_c \approx B_{eq}/\sqrt{R_m}$

B-Field

Schmitt and Schüssler (1989)

Dynamical Ω -quenching:

dynamical action of Lorentz force on differential rotation

truncated system

 $\dot{A} = B - A$ $\dot{B} = iP\Omega A - B$ $\dot{\Omega} = iAB - v\Omega$

similar to Lorenz system

rich bifurcation structure for increasing P, chaotic solutions

IMPRS, 3/2003		
The Solar Dynamo Dieter Schmitt		
Title page		
Mean-field models		
The solar cycle		
Long-term variability		
Page 15 of 43		
44	••	
•	•	
Back	Close	
Full Screen		

0.029

0.03

2D PDE more regular

IMPRS, 3/2003 The Solar Dynamo **Dieter Schmitt** Title page Mean-field models The solar cycle Long-term variability Page 16 of 43 44 \blacktriangleright ◄ ► Back Close Full Screen

Weiss and Tobias (2000)

Flux loss due to magnetic buoyancy:

either by extra loss term in B_{tor} equation, e.g.

$$\frac{B_0}{\tau}g(B) = \frac{B_0}{\tau} \begin{cases} -\operatorname{sgn}(B)(B^n - B_c^n) & \text{for } |B| > B_c, & n = 2, 3 \\ 0 & \text{for } |B| < B_c \end{cases}$$

or

 $v_r = h(B^n)$ in $\nabla \times (\nabla \times B)$ – term

2. The solar cycle

2.1 Observations

IMPRS, 3/2003 The Solar Dynamo **Dieter Schmitt** Title page Mean-field models The solar cycle Long-term variability Page 18 of 43 44 \blacktriangleright ◄ ► Back Close Full Screen

DAILY SUNSPOT AREA AVERAGED OVER INDIVIDUAL SOLAR ROTATIONS

IMPRS, 3/2003 The Solar Dynamo **Dieter Schmitt** Title page Mean-field models The solar cycle Long-term variability Page 19 of 43 44 \blacktriangleright ◄ ► Close Back Full Screen

The Solar Dynamo Dieter Schmitt Title page Mean-field models The solar cycle Long-term variability Page 20 of 43 44 \blacktriangleright ◄ ► Close Back Full Screen

IMPRS, 3/2003

IMPRS, 3/2003 The Solar Dynamo Dieter Schmitt Title page Mean-field models The solar cycle Long-term variability Page 21 of 43 44 \blacktriangleright ◄ ► Close Back Full Screen

2.2 Classical dynamo models

 $\alpha \Omega$ -dynamo in convection zone, $\Omega(r)$ with $\partial \Omega / \partial r < 0$,

theoretical butterfly diagram $B_{\varphi}(\vartheta, t)$ in good accordance

with observations

Steenbeck and Krause (1969)

2.3 Difficulties of convection zone models

- Intermittency: magnetic flux in small-scale structures embedded in field-free plasma (flux tubes)
- Polarity rules: strictly obeyed $\rightarrow B \approx 10^5$ G (Schüssler, 1993)
- Magnetic buoyancy: rise time \ll cycle length (Parker, 1975)
- Rotation law: from helioseismology, e.g. Tomzyck et al. (1995)
- Resulting butterfly diagram (Köhler, 1973)

IMPRS, 3/2003		
The Solar Dynamo Dieter Schmitt		
Title	nage	
Moon fio		
	Mean-field models	
	The solar cycle	
Long-term variability		
Page 23 of 43		
44	••	
•	►	
Back	Close	
Full Screen		

2.4 Overshoot layer dynamos

Favourable dynamo site:

storage, reduced turbulent diffusivity, rotation, dynamic α -effect

- Dynamo action of magnetostrophic waves (Schmitt, 1985): magnetic field layer unstable due to magnetic buoyancy
- \rightarrow excitation of magnetostrophic waves in a fast rotating fluid

$$V_A^2/V_{\rm rot} \approx V_{\rm mw} \ll V_A \ll V_{\rm rot} \ll V_S$$

mw are helical and induce an electromotive force \rightarrow electric current parallel to toroidal magnetic field \equiv dynamic α -effect: $\alpha \langle B \rangle_{tor} = \langle \mathbf{v} \times \mathbf{b} \rangle_{tor}$ not based on convection, applicable to strong fields

superposition of most unstable waves:

• Dynamo model

• Flux tube instability: $B > B_{\text{threshold}}$ (Ferriz-Mas et al., 1994)

2.5 Interface dynamos

Parker (1993):

convection zone: η_T large, α

overshoot layer: η_T small, $\partial \Omega / \partial r$, most flux

dynamo on interface layer

IMPRS, 3/2003		
The Solar Dynamo		
Dieter	Schmitt	
Title	e page	
Mean-field models		
The solar cycle		
Long-term variability		
Paga	26 of 42	
гауе	20 01 43	
44	••	
•	•	
Back Close		
Full Screen		

IMPRS, 3/2003

The Solar Dynamo

Dieter Schmitt

Title page Mean-field models The solar cycle Long-term variability Page 27 of 43 ●● ● ● Back Full Screen

Charbonneau and MacGregor (1997)

influences of $\partial \Omega / \partial \vartheta$, $\partial \Omega / \partial r$ -profile, α -profile

2.6 Flux transport dynamos

Durney (1995), Choudhuri et al. (1995),

Dikpati and Charbonneau (1999)

 regeneration of poloidal field through tilt of decaying bipolar active regions

(Babcock, 1961; Leighton, 1969)

- rotational shear in tachocline
- transport of magnetic flux by meridional circulation

with meridional circulation

IMPRS, 3/2003		
The Solar Dynamo Dieter Schmitt		
Title page		
Mean-field models		
The solar cycle		
Long-term variability		
Page 28 of 43		
••	••	
•	►	
Back	Close	
Full Screen		

2.7 Overshoot layer dynamo with meridional circulation

IMPRS, 3/2003		
The Solar Dynamo		
Dieter Schmitt		
Title	bage	
Mean-field models		
The solar cycle		
Long-term variability		
Page 30 of 43		
44	••	
•	•	
Back	Close	
Full Screen		

deep α -effect favours dipolar, high α -effect quadrupolar solutions

3. Long-term variations

3.1 Observations

• Variation in cycle length and strength

odd-even effect (Gnevychev-Ohl)

• Maunder minimum 1630–1710, grand minima

Ribes and Nesme-Ribes (1993)

oscillatory? asymmetric?

• Cosmogenic isotopes: ¹⁴C, ¹⁰Be

formed by cosmic rays as spallation products in the atmosphere flux of galactic cosmic rays anticorrelated with solar activity long term trend due to geomagnetic field

¹⁴C: tree rings, 30-year convolution, long-term trend

cycle possibly continued during Maunder minimum Dalton minimum, Maunder minimum, Spörer minimum, Wolf minimum, medieval maximum: potentially correlated with climate

Title	e page	
Mean-field models		
The solar cycle		
Long-term variability		
Page 35 of 43		
44	••	
•	•	
Back	Close	
Full Screen		

• Cool star activity: star spots, Ca index, X-ray emission

0.25 : 0.25 : 0.5

Wilson (1978), Baliunas et al. (1995)

fast rotating stars more active

- Origin of long-term modulation of solar cycle hardly understood
 - modulation of differential rotation
 - stochastic fluctuations of the α -effect
 - variation of meridional circulation
 - on-off intermittency

IMPRS, 3/2003		
The Solar Dynamo		
Title page		
Mean-field models		
The solar cycle		
Long-term variability		
Page 36 of 43		
••	••	
•	►	
Back	Close	
Full Screen		

3.2 Modulation of differential rotation

IMPRS, 3/2003 The Solar Dynamo **Dieter Schmitt** Title page Mean-field models The solar cycle Long-term variability Page 37 of 43 44 $\blacktriangleright \blacktriangleright$ ◄ ► Close Back Full Screen

Weiss and Tobias (2000)

3.3 Stochastic fluctuations of the α -effect

$$\alpha = \alpha_0(r,\vartheta) + \delta\alpha(r,\vartheta,t)$$

The Solar Dynamo **Dieter Schmitt** Title page Mean-field models The solar cycle Long-term variability Page 38 of 43 44 ◄ ► Close Back Full Screen

IMPRS, 3/2003

Ossendrijver, Hoyng, Schmitt (1996)

log Amplitude vs Phase shift

Asymmetry

IMPRS, 3/2003	
The Solar Dynamo	
Dieter Schmitt	
Title page	
Mean-field models	
The solar cycle	
Long-term variability	
D 00 (40	
Page 39 of 43	
44	••
•	►
Back	Close
Full Screen	

3.4 Variation of meridional circulation

Charbonneau and Dikpati (2000)

IMPRS, 3/2003

The Solar Dynamo

Dieter Schmitt

Title page

The solar cycle

Page 40 of 43

Full Screen

 \blacktriangleright

►

Close

δα

The Solar Dynamo **Dieter Schmitt** Title page Mean-field models The solar cycle Long-term variability Page 41 of 43 **4** \blacktriangleright ◄ ► Close Back Full Screen

IMPRS, 3/2003

3.5 On-off intermittency

- overshoot layer dynamo driven by flux tube instability
- lower threshold in field strength for dynamo action
- random fluctuations due to magnetic fields in convection zone

IMPRS, 3/2003 The Solar Dynamo **Dieter Schmitt** Title page Mean-field models The solar cycle Long-term variability Page 42 of 43 44 ◄ Back Close **Full Screen**

Schmitt et al. (1996)

interface dynamo / flux tube dynamo

differential rotation and downflow

IMPRS, 3/2003

Ossendrijver (2000)