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1. Mean-field dynamo models

Mean-field vs. dynamical 3D models

1.1 Dynamo equation

Spherical coordinates (r, ϑ,ϕ)

axisymmetric mean fields B, v , ∂/∂ϕ = 0, azimuthal averages

kinematic, i.e. v given

∂B
∂t

= ∇×(v ×B + αB − ηT∇×B) mean induction equation

〈v ′×B′〉 = αB − β∇×B, ηT = ηm + β

α ≈ −τ 〈 v ′ ·(∇×v ′) 〉/3, β ≈ τ 〈 v ′2 〉/3 for isotropic turbulence

B = Bp + Bt = ∇×(0,0, Aϕ) + (0,0, Bϕ), B = Bϕ, A = Aϕ
v = v p + v t = ∇×(0,0, ψ/r sinϑ) + (0,0,Ω(r, ϑ)r sinϑ)

∂Bp
∂t

= ∇×(v p×Bp + αBt − ηT∇×Bp)
∂Bt
∂t

= ∇×(v p×Bt + v t×Bp + αBp − ηT∇×Bt)

v p = 0, α = ηT = const, ∇×∇×(F eϕ) = −∆1F eϕ, ∆1 = ∆ − 1

r2 sin2 ϑ
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∂B
∂t

= r sinϑ(∇×A)·∇Ω − α∆1A + ηT∆1B

∂A
∂t

= αB + ηT∆1A
B tBp

gradα , 

α

Ω

rigid rotation has no effect

no dynamo if α = 0

α−term
∇Ω−term

≈
α0

|∇Ω|L2

{
� 1 α2−dynamo
� 1 αΩ−dynamo

Sun: |∇Ω|L2 ≈ ∆v ≈ 400 ms−1, α ≈ v ′2rmsτ/L ≈ 1 ms−1

y αΩ-dynamo

|Bt|
|Bp|
≈
(
|∇Ω|L2

α0

)1/2

≈ 20 toroidal field dominates

bipolar regions on surface erupted toroidal field

y EW orientation
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1.2 Dynamo effects

• Differential rotation

• Helical convection / α-effect
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1.3 αΩ-dynamo

∂Ω
∂r

< 0, α ∼ cosϑ

out

in

B

αΒ

Ω Ω ΩΩ

poloidal field toroidal field by poloidal field toroidal field by
differential rotation; by α-effect differential rotation;

electric currents electric currents
by α-effect by α-effect

periodically alternating field, here antisymmetric with respect
to equator
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1.4 Dynamo waves

Consider αΩ-equations locally

Cartesian coordinates (x, y, z) corresponding to (ϑ,ϕ, r)

α = const, ηT = const, v = (0,Ωz,0) with Ω = const

Bt = (0, B(x, t),0), Bp = (0,0, ∂A(x, t)/∂x)

Ḃ = ΩA′ + ηTB
′′, Ȧ = αB + ηTA

′′, ˙= ∂/∂t, ′ = ∂/∂x

ansatz (B,A) = (B0, A0) exp[i (ωt + kx)]

dispersion relation (iω + ηTk
2)2 = ikΩα

assume αΩ < 0, e.g. α > 0,Ω < 0 and take k > 0

ω = iηTk
2 − (1 + i )|kαΩ/2|1/2 (Parker, 1955)

growth rate −ωI = −ηTk
2 + |kαΩ/2|1/2 ≥ 0 for

|kαΩ/2|1/2 ≥ ηTk
2: inductive effects must exceed threshold

ωR = −|kαΩ/2|1/2 < 0: wave propagation in positive x-direction

identical result with k < 0

if αΩ > 0 wave propagation in negative x-direction
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In general:

wave propagates along surfaces of constant rotation

(Yoshimura, 1975)

direction of propagation depends on sign(αΩ)

period geometric mean of (kα)−1 and Ω−1

in the critical case (ηTk
2)−1, decreasing with increasing excitation

1.5 Dynamo number

Ω = Ω0Ω̃, α = α0α̃, t =
R2

ηT
t̃, B = B0B̃, A = RB0Ã

˜̃A =
Ω0R

2

ηT
Ã

∂B
∂t

= r sinϑ(∇×A)·∇Ω+∆1B

∂A
∂t

= P αB + ∆1A

P = RαRΩ =
α0R
ηT
·
Ω0R

2

ηT
dynamo number , Bt/Bp ≈ (RΩ/Rα)1/2
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1.6 αΩ dynamo modes

bounded αΩ dynamo solutions, dimensionless

α = α0 cosx, ∂uy/∂z = G0 sinx dynamo effects

Ȧ = P cosxB + A′′, Ḃ = sinxA′ + B′′ dynamo equations

P = RαRΩ =
α0L
ηT
·
G0L

2

ηT
dynamo number

boundary conditions, L = π/2

x
0 ππ/2

North Pole Equator South Pole

x = 0 : A = B = 0
x = π : A = B = 0
x = π/2 : antisymmetric solution, dipolar : A′ = B = 0

symmetric solution, quadrupolar : A = B′ = 0

now antisymmetric solution

Free decay:

Ȧ = A′′, Ḃ = B′′

An = e
ωnt sinnx with ωn = −n2, n = 1,3,5, . . .

Bn = e
ωnt sinnx with ωn = −n2, n = 2,4,6, . . .
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Eigenvalue problem:

Ȧ = P cosxB + A′′, Ḃ = sinxA′ + B′′

expansion in decay modes (complete, orthogonal, satisfy b.c.)

A = eωt
∑

n=1,3,5,...

an sinnx, B = eωt
∑

n=2,4,6,...

bn sinnx

sinx cosnx = 1/2 [sin(n + 1)x − sin(n − 1)x]
cosx sinnx = 1/2 [sin(n + 1)x + sin(n − 1)x]∫ π/2

0
sinnx sinmx dx = π/4 δnm

ωam = P/2(bm−1 + bm+1) −m2am, m odd

ωbm = 1/2((m − 1)am−1 − (m + 1)am+1) −m2bm, m even

ω


a1
b2
a3
b4...

 =


−1 P/2
1/2 −4 −3/2

P/2 −9 P/2
3/2 −16 −5/2

. . .




a1
b2
a3
b4...


vary P until ωR = 0 : Pcrit
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Dipole: antisymmetric with respect to equator

�� �� �������� ω

ω I

R

P<0

-16 -9 -4 -1

4.5

28
-2097

-102

�� �� �������� ω

ω I

R
26

493
17

-4-9 -1-16

P>0

272

   -1.33211

    1.33211

   -9.49303E-02

    9.49303E-02

Time Time

NP

E

SP

Pcpublic/schmitt/dynamo/dynewp.f and dynew.f

Exercise: find critical dynamo numbers for quadrupole,
symmetric with respect to equator
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1.7 Spherical αΩ solutions

(Stix 1976)



IMPRS, 3/2003

The Solar Dynamo

Dieter Schmitt

Title page

Mean-field models

The solar cycle

Long-term variability

Page 12 of 43

JJ II

J I

Back Close

Full Screen

theoretical butterfly diagram

(Krause and Steenbeck 1969)
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1.8 Nonlinear effects

Linear theory:

exponential growth for P > Pcrit,

thus often P = Pcrit used, further B = |B| not determined

nonlinear effects through Lorentz force or flux loss,

especially for B & Beq with B2
eq/8π = 1/2 ρu2

rms

Lenz law: reduction of induction effect

heuristic approaches, partly backed by mean field theory

〈F Lor〉 = j×B + 〈j′×B′〉 → v → Ω

F
′
Lor = j×B

′ + j′×B → v
′ → α

α -quenching:

α = α0 f (B), f decreasing with increasing B, often

f (B) = 1 − B2/B2
c or f (B) = 1/(1 + B2/B2

c) or

f (B) = B3
c/B

3 with Bc ≈ Beq or Bc ≈ Beq/
√
Rm
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Schmitt and Schüssler (1989)
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Dynamical Ω-quenching:

dynamical action of Lorentz force on differential rotation

truncated system

Ȧ = B − A
Ḃ = iPΩA − B
Ω̇ = iAB − νΩ

similar to Lorenz system

rich bifurcation structure for increasing P , chaotic solutions

1
9
9
6
A
&
A
.
.
.
3
0
7
L
.
.
2
1
T

Cattaneo et al. (1984) Tobias (1996)
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2D PDE more regular

110 N.O. WEISS AND S.M. TOBIAS

Figure 6.Colour coded butterfly diagrams showing the toroidal fields derived from mean field solar
dynamo models. The upper panel (a) shows the cyclic dipolar (asymmetric) activity interrupted by
Grand Minima whilst in panel (b) the possibility of flipping between dipole (antisymmetric) and
quadrupole (symmetric) states at a Grand Minimum is demonstrated (from Beer et al., 1998)

tic fluctuations would be needed to produce a serious effect. On the other hand,
chaotic modulation explains the recurrent features of grand minima, most notably
the persistent 200-year timescale in the proxy record. Any weak stochastic fluctu-
ations need not have any qualitative effect (trajectories would ‘shadow’ motion on
the chaotic attractor) except in deep grand minima when they would certainly be
important.

110 N.O. WEISS AND S.M. TOBIAS

Figure 6.Colour coded butterfly diagrams showing the toroidal fields derived from mean field solar
dynamo models. The upper panel (a) shows the cyclic dipolar (asymmetric) activity interrupted by
Grand Minima whilst in panel (b) the possibility of flipping between dipole (antisymmetric) and
quadrupole (symmetric) states at a Grand Minimum is demonstrated (from Beer et al., 1998)

tic fluctuations would be needed to produce a serious effect. On the other hand,
chaotic modulation explains the recurrent features of grand minima, most notably
the persistent 200-year timescale in the proxy record. Any weak stochastic fluctu-
ations need not have any qualitative effect (trajectories would ‘shadow’ motion on
the chaotic attractor) except in deep grand minima when they would certainly be
important.

Weiss and Tobias (2000)
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Flux loss due to magnetic buoyancy:

either by extra loss term in Btor equation, e.g.

B0

τ
g(B) =

B0

τ

{
−sgn(B)(Bn − Bnc) for |B| > Bc , n = 2,3
0 for |B| < Bc

or

vr = h(Bn) in ∇×(v ×B) − term

1
9
8
9
A
&
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2. The solar cycle

2.1 Observations
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2.2 Classical dynamo models

αΩ-dynamo in convection zone , Ω(r) with ∂Ω/∂r < 0,

α ∼ cosϑ, ηT = 1010 cm2s−1

theoretical butterfly diagram Bϕ(ϑ, t) in good accordance

with observations

Steenbeck and Krause (1969)
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2.3 Difficulties of convection zone models

• Intermittency: magnetic flux in small-scale structures

embedded in field-free plasma (flux tubes)

• Polarity rules: strictly obeyed→ B ≈ 105 G (Schüssler, 1993)

• Magnetic buoyancy: rise time� cycle length (Parker, 1975)

• Rotation law: from helioseismology, e.g. Tomzyck et al. (1995)

• Resulting butterfly diagram (Köhler, 1973)

446 CHARBONNEAU ET AL. Vol. 527

1995a ; Charbonneau et al. 1998b ; and references therein).
The transition to the overlying di†erentially rotating
envelope occurs across a thin approximately([0.1 R

_
),

spherical layer often now called the solar tachocline, follow-
ing the work of Spiegel & Zahn (1992). In what follows we
use this term to refer to the full rotational shear layer near
the base of the convective envelope, irrespective of its exact
position with respect to the base of the core-envelope inter-
face. The Ðrst reliable determination of the location and
thickness of the tachocline was carried out by Kosovichev
(1996), who estimated its thickness to be 0.09 ^ 0.04 R

_
.

An inference of the SunÏs internal rotation proÐle from
helioseismic data is illustrated in Figure 1. This shows the
result of inverting the 2 yr LOWL data using a two-
dimensional Regularized Least Squares method (see ° 3.1).
The data were obtained using the LOWL instrument oper-
ating on Mauna Loa on the island of Hawaii. The instru-
ment measures Doppler velocities at the SunÏs surface.
From these, the frequencies of global solar p-mode oscil-
lations (see ° 2) can be deduced.

From a dynamical point of view, the matching of a lati-
tudinal gradient in angular velocity in the envelope to a
rigidly rotating outer radiative core o†ers a challenging
problem in stellar hydrodynamics. Approaching this
problem from the standpoint of laminar theory, Spiegel &
Zahn (1992) constructed unmagnetized tachocline models
under the assumption of latitudinal geostrophic balance
and have shown that the helioseismically inferred thickness
of the solar tachocline can only be reproduced if viscous

FIG. 1.ÈSolar internal rotation proÐle as inferred from 2 yr LOWL
data using a 2D RLS inversion. Contours of constant rotation rate are
shown, the values being in nHz. The trade-o† parameters (see Schou et al.
1994 for details) were and the discretized mesh fork

r
\ 10~5, kh\ 10~3 ;

the solution had 101 points in the radial direction and 25 points in the
latitudinal direction. Only one quadrant is shown, with the equatorial
plane along the bottom edge Éand the rotation axis along the left edge. The
inferred rotation proÐle in the other three quadrants can be obtained by
reÑection in the equatorial plane and the plane of the axis in this Ðgure.
The narrow midlatitude band of deceleration seen at is anr/R

_
^ 0.85

inversion artifact due to the LOWL duty cycle and mode set being
restricted to l ¹ 100 ; it does not appear in inversions using other data sets
(see, e.g., Schou et al. 1998).

momentum transport is strongly enhanced in the horizontal
direction ; otherwise, by the solar age radiative di†usion as
well as angular momentum transport by the secondary,
meridional Ñow broadens the tachocline far beyond its
inferred radial width (see also Elliott 1997). They ascribe
this enhanced horizontal transport to turbulence driven by
shear instability of the di†erential rotation.

Kitchatinov & (1993, 1995) have developed anRu� diger
analytical model for the (anisotropic) turbulent Reynolds
stresses arising from the interaction between rotation and
turbulence in the solar convective envelope, which also
yields a steady state di†erential rotation that is character-
ized by a shear layer immediately beneath the convective
envelope (see Kitchatinov & 1995, Fig. 2). As in theRu� diger
Spiegel & Zahn model, their tachocline is far thicker than
suggested by helioseismology. However, they suggest that
magnetic stresses, rather than enhanced horizontal viscous
coupling, are responsible for keeping the thickness of their
tachocline in agreement with helioseismic inferences

& Kitchatinov 1997 ; MacGregor & Charbonneau(Ru� diger
1999 ; see also Gough & McIntyre 1998).

The introduction of a magnetic Ðeld within the tachocline
is far from being an ad hoc hypothesis. Based on studies of
the stability and rise of toroidal magnetic Ñux ropesÈ
presumed to give rise to sunspot pairs upon emerging
through the photosphereÈit is becoming increasingly clear
that the stably stratiÐed layers located immediately beneath
the convective envelope are the most likely location for the
storage of magnetic Ñux (for a review see 1996). InSchu� ssler
such models, the stability properties of the magnetic Ñux
ropes depend sensitively on the dynamical and thermody-
namical structure of the storage layer, including its radial
extent beneath the envelope.

Because of the strong radial shear present in its equato-
rial region, as revealed by helioseismology, the solar tacho-
cline is also a promising location for the seat of the solar
dynamo. Thin-layer mean-Ðeld dynamo models can and
have been constructed (see, e.g., & BrandenburgRu� diger
1995, and references therein). A general property of such
models is the dependence of the dynamo period on the
thickness of the generating layer, reÑecting the decrease of
the magnetic dissipation time with decreasing thickness. A
related class of dynamo models are the so-called interface
dynamos (Parker 1993 ; Tobias 1996 ; Charbonneau & Mac-
Gregor 1996, 1997), which are characterized by the spatial
segregation of the shear and a-e†ect on either side of the
core-envelope interface. Once again the behavior of the
resulting dynamo is sensitively dependent on the thickness
of the shear layer and relies on the bulk of the layer being
located in the upper part of the stably stratiÐed radiative
core, rather than within the unstably stratiÐed overlying
envelope.

It is an intriguing and often unappreciated fact that the
latitudinal shear proÐle in the solar convection zone lies
close to the stability limit with respect to global, inviscid
horizontal shear instability. Watson (1981) originally
argued that the solar surface latitudinal di†erential rotation
was in fact at the stability limit. However, Dziembowski &
Kosovichev (1987) considered more realistic rotational pro-
Ðles and arrived to the opposite conclusion. More recently
Charbonneau, Dikpati, & Gilman (1999) examined the sta-
bility of the (weaker) horizontal di†erential rotation proÐle
within the tachocline and found it to be stable. On the other
hand, Gilman & Fox (1997) have shown that the simulta-
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2.4 Overshoot layer dynamos

Favourable dynamo site:

storage, reduced turbulent diffusivity, rotation, dynamic α-effect

• Dynamo action of magnetostrophic waves (Schmitt, 1985):

magnetic field layer unstable due to magnetic buoyancy

→ excitation of magnetostrophic waves in a fast rotating fluid

v2
A/vrot ≈ vmw� vA� vrot� vS

mw are helical and induce an electromotive force

→ electric current parallel to toroidal magnetic field

≡ dynamic α-effect: α〈B〉tor = 〈v ×b〉tor

not based on convection, applicable to strong fields

superposition of most unstable waves:

Aequator

θ

+

-

α

Pol
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• Dynamo model

Schmitt (1993)

difficulties: overlapping wings, parity, phase Bϕ − Br
• Flux tube instability: B > Bthreshold (Ferriz-Mas et al., 1994)
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2.5 Interface dynamos

Parker (1993):

convection zone: ηT large, α

overshoot layer: ηT small, ∂Ω/∂r , most flux

dynamo on interface layer
514 CHARBONNEAU & MACGREGOR Vol. 486

FIG. 9.ÈTypical solution for an interface mode concentrated at low latitudes, produced by using a latitudinal dependency for the a-e†ect given by eq. (15).
The format is identical to Figs. and Solution parameters are n \ 10~2, d \ 0.03, and The dynamo mode propagates towards the3 7. C) \ 105, Ca\[5.
equator (pole) for negative (positive) values of In dimensional units, this solution has a period 22.3 yr for cm2 s~1.Ca. g

E
\ 1012

shear-driven interface mode. Because both types of modes
have markedly di†erent phase relationships, their inter-
action is largely destructive, leading to the rapid decay of
both modes even if the dynamo number is increased indeÐ-
nitely. This interference is also responsible for the lack of
any hybrid modes with positive growth rates for negative
values of Ca.

4.3. Interface Modes Concentrated in the Equator
The interface mode of is localized in the polarFigure 7

regions, and is thus associated with the polar radial shear,
as opposed to the equatorial shear. It is hardly surprising
that this interface mode should be excited preferentially, as
(1) the adopted shear proÐle (cf. eqs. is such that[10]È[12])
below the interface the radial shear is stronger at the pole
than at the equator, and (2) the a-e†ect is maximal at the
pole and vanishes at the equator (cf. Can true inter-° 2.3).
face modes associated with the equatorial radial shear be
excited? If one is willing to grant oneself complete freedom
to specify the latitudinal dependency of the a-e†ect, then the
answer is, not surprisingly, positive.

For illustrative purposes, consider the following colatu-
dinal dependency for the a-e†ect (cf. eq. [9]) :

h(h) \
G[sin 4h ,
0 ,

n/4 ¹ h3n/4 ;
otherwise .

(15)

shows a typical solution at successive phase inter-Figure 9
vals of *r\ n/6, in the same format as on Figures and3 7,
for a true interface solution having n \ 10~2,C) \ 105,
d \ 0.03, and This solution was obtained usingCa\ [5.

for the latitudinal dependency of the a-e†ect, iseq. (15)
mildly supercritical with p \ 2.23 and frequency u\ 42.3,
and is a true interface dynamo solution. is theFigure 10

associated butterÑy diagrams for the poloidal and toroidal
Ðelds, as on Figures and4 8.

In contrast to the solution shown on theFigure 7,
dynamo mode is now concentrated at low latitudes, and
propagates toward the equator (pole) for negative (positive)

The poloidal Ðeld emerges at midlatitudes, and has aCa.

FIG. 10.ÈButterÑy diagrams for the equatorial interface mode shown
on The format is identical to Figs. and Comparing this Ðgure toFig. 9. 4 8.

notice how the poloidal Ðeld at high latitudes now lags the toroidalFig. 8,
Ðeld by a phase interval *r^ n/2.
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FIG. 9.ÈTypical solution for an interface mode concentrated at low latitudes, produced by using a latitudinal dependency for the a-e†ect given by eq. (15).
The format is identical to Figs. and Solution parameters are n \ 10~2, d \ 0.03, and The dynamo mode propagates towards the3 7. C) \ 105, Ca\[5.
equator (pole) for negative (positive) values of In dimensional units, this solution has a period 22.3 yr for cm2 s~1.Ca. g

E
\ 1012

shear-driven interface mode. Because both types of modes
have markedly di†erent phase relationships, their inter-
action is largely destructive, leading to the rapid decay of
both modes even if the dynamo number is increased indeÐ-
nitely. This interference is also responsible for the lack of
any hybrid modes with positive growth rates for negative
values of Ca.

4.3. Interface Modes Concentrated in the Equator
The interface mode of is localized in the polarFigure 7

regions, and is thus associated with the polar radial shear,
as opposed to the equatorial shear. It is hardly surprising
that this interface mode should be excited preferentially, as
(1) the adopted shear proÐle (cf. eqs. is such that[10]È[12])
below the interface the radial shear is stronger at the pole
than at the equator, and (2) the a-e†ect is maximal at the
pole and vanishes at the equator (cf. Can true inter-° 2.3).
face modes associated with the equatorial radial shear be
excited? If one is willing to grant oneself complete freedom
to specify the latitudinal dependency of the a-e†ect, then the
answer is, not surprisingly, positive.

For illustrative purposes, consider the following colatu-
dinal dependency for the a-e†ect (cf. eq. [9]) :

h(h) \
G[sin 4h ,
0 ,

n/4 ¹ h3n/4 ;
otherwise .

(15)

shows a typical solution at successive phase inter-Figure 9
vals of *r\ n/6, in the same format as on Figures and3 7,
for a true interface solution having n \ 10~2,C) \ 105,
d \ 0.03, and This solution was obtained usingCa\ [5.

for the latitudinal dependency of the a-e†ect, iseq. (15)
mildly supercritical with p \ 2.23 and frequency u\ 42.3,
and is a true interface dynamo solution. is theFigure 10

associated butterÑy diagrams for the poloidal and toroidal
Ðelds, as on Figures and4 8.

In contrast to the solution shown on theFigure 7,
dynamo mode is now concentrated at low latitudes, and
propagates toward the equator (pole) for negative (positive)

The poloidal Ðeld emerges at midlatitudes, and has aCa.

FIG. 10.ÈButterÑy diagrams for the equatorial interface mode shown
on The format is identical to Figs. and Comparing this Ðgure toFig. 9. 4 8.

notice how the poloidal Ðeld at high latitudes now lags the toroidalFig. 8,
Ðeld by a phase interval *r^ n/2.

Charbonneau and MacGregor (1997)

influences of ∂Ω/∂ϑ, ∂Ω/∂r-profile, α-profile
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2.6 Flux transport dynamos

Durney (1995), Choudhuri et al. (1995),

Dikpati and Charbonneau (1999)

• regeneration of poloidal field through tilt

of decaying bipolar active regions

(Babcock, 1961; Leighton, 1969)

• rotational shear in tachocline

• transport of magnetic flux by meridional circulation
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by HaleÏs polarity law is nearly always antisymmetricBÕabout the equator. Unfortunately, we do not have any
means to assess the parity of the solar magnetic Ðeld about
the equator before 1600, but certainly the Sun did not select
the ““ even parity ÏÏ (the symmetric and antisymmetric A)BÕover the past century since bipolar spots are almost never
seen with the same leading polarity at the same time in both
hemispheres. This particular feature of the solar cycle
feature has not received much attention in solar dynamo
models. Here we investigate the issue of parity selection in
Ñux-transport dynamo models, extending our calculations
to a full spherical shell and comparing results with the
observed parity.

In a full spherical shell model, the equator is no longer a
boundary of the computational domain, and to demand the
antisymmetric (and, hence, the odd parity dynamoBÕmode) about the equator is not physical. The boundary
conditions at the two poles and at the bottom boundary
remain as before. Applying a condition on A at the top
boundary requires some discussion is again zero there,(BÕ

without loss of generality). The poloidal Ðeld above the
photosphere is assumed to be a potential Ðeld that satisÐes
the equation ($2[ 1/r2 sin2 h)A\ 0 up to the source
surface at r \ 2.5R, and beyond that, the solar wind
stretches the Ðelds radially. The analytical solution for

has been given in equation (8) of Dikpati & Choud-A o
r@Rz1huri (1995), who included only the odd terms in the associ-

ated Legendre polynomial series in that expression to yield
a symmetric A solution about the equator. To allow the
dynamo to choose its favored symmetry, we use the same
expression for A as given by equation (8) of Dikpati
& Choudhuri (1995) above the photosphere but keep all
the terms in the associated Legendre polynomial series.
We demand only the smooth matching of A across the
photosphere.

Initializing both the Ñux-transport dynamos (driven by
the Babcock-Leighton a-e†ect and by tachocline a-e†ect)
with their respective odd parity modes (obtained from the
respective single hemisphere calculation), we allow the
dynamos to relax for several centuries. Figures 9 and 10

FIG. 9.ÈFull spherical shell solution for the Ñux-transport Babcock-Leighton dynamo. (a) Prescribed di†erential rotation pattern (dotted contours),
meridional circulation (solid streamlines), and Babcock-Leighton surface a-e†ect location (shaded regions) in our computation domain. (b) Time-latitude
diagram for the toroidal Ðeld at r/R\ 0.7.
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1. a full cycle period of approximately 22 years ;
2. a time-latitude ““ butterÑy ÏÏ diagram for the toroidal

Ðeld exhibiting a strong equatorward branch restricted
below 30¡ latitude ;

3. a surface poloidal Ðeld that Ðrst appears at mid-
latitude, with a dominant polar migrating branch ;

4. a phase shift of n/2 between the surface polar Ðeld and
the deep toroidal Ðeld, so that the polar Ðeld changing its
polarity from negative to positive when the toroidal Ðeld is
positive and maximal in intensity ;

5. a maximum toroidal Ðeld at or immediately below the
interface in the range 104È105 G; and

6. a high-latitude surface poloidal Ðeld of about 10 G.

Figure 7 shows interface toroidal and surface poloidal
butterÑy diagrams, identical in format to Figure 3, for a
solar-like solution having a maximum surface Ñow speed of

cm s~1, a turbulent di†usivity in the envelopeu0\ 1500
cm2 s~1, and a source coefficient of magni-g

T
\ 3 ] 1011

tude cm s~1. This solution has a period T \ 19.8 yr,s0\ 20
maximum toroidal Ðeld at the core-envelope interface BÕ\
10.4 kG, and maximum radial Ðeld at the pole G.B

r
\ 140

It satisÐes constraints 1, 3, 4, and 5 listed above. Note that a
dynamo period of exactly 22 years is easily achievable by
Ðne tuning the circulation speed but given the nature ofu0,the model this would not be a particularly meaningful exer-
cise (the more so since the solar cycle period is not strictly
constant at T \ 22 yr) ; the important point here is that a
surface meridional Ñow speed comparable with obser-
vations produces a dynamo with a period quite close to that
of the solar cycle.

FIG. 7.ÈButterÑy diagrams for a solar-like solution. The format and
contour level spacing is identical to Fig. 3. This solution is produced using
parameter values cm s~1, cm s~1, andu0\ 1500 s0\ 20 g

T
\ 3 ] 1011

cm2 s~1, corresponding to and It isC) \ 4.7] 104, C
S
\ 4.64, R

m
\ 348.

characterized by a cycle period T \ 19.8 yr, maximum toroidal Ðeld
strength below the interface, kG, and maximum surface polarBÕmax \ 10
Ðeld G. Note how the surface polar Ðeld (b) changes sign as theB

rmax \ 140
low-latitude toroidal Ðeld on (a) is maximal in amplitude.

The toroidal Ðeld butterÑy diagram (Fig. 7a) does exhibit
a strong equatorward branch conÐned to low latitudes, as
required by the constraint in equations (2a) and (2b), but a
relatively strong (D103 G) toroidal Ðeld is also present at all
latitudes. As discussed in ° 3, this is an unavoidable induc-
tive e†ect associated with the latitudinal shear both within
and below the envelope, and no change in model param-
eters can do away entirely with this feature. One might of
course assume that the low-latitude Ðeld leads to the pro-
duction of sunspots, while the somewhat weaker Ðeld at
higher latitudes does not ; this, however, represents an
extraneous assumption, even though studies of the stability
of toroidal Ñux ropes do indicate that the growth rate of the
magnetic buoyancy instability is a rather sensitive function
of both the assumed toroidal Ðeld strength and latitude (see,
e.g., Ferriz-Mas 1996).

The high-latitude surface poloidal Ðeld is also too strong
by an order of magnitude. As discussed in ° 3, the intensiÐ-
cation of the surface polar Ðeld is an unavoidable conse-
quence of Ñux conservation in a geometrically converging
meridional Ñow. The most straightforward way to reduce
this intensiÐcation is to alter the morphology of the circula-
tion Ñow pattern at high latitudes. While this is certainly
possible, at this stage in the modeling this again does not
appear critical, especially in view of the fact that the form of
our internal circulatory Ñow is speciÐed in a largely ad hoc
manner.

6. CONCLUSION

In this paper we have investigated the property of a Ñux
transport dynamo model. Following the original suggestion
of Babcock (1961), we ascribe the regeneration of the poloi-
dal Ðeld to the net dipole moment associated with decaying
tilted bipolar regions, the tilt being a consequence of the
action of Coriolis forces on primarily toroidal magnetic Ñux
ropes buoyantly rising through the solar convective
envelope. We mathematically model this process as a source
term superÐcially resembling the a-e†ect of mean Ðeld
theory. In fact, we attempt to build into our poloidal source
term insight gained from rising Ñux rope simulations ; in
particular, the source term is nonlocal, in that the gener-
ation of poloidal Ðeld at the surface is made proportional to
the strength of the toroidal Ðeld deeper down at the core-
envelope interface. The poloidal Ðeld so generated is trans-
ported into the solar interior by a large-scale meridional
circulatory Ñow, which we assume to consist of a single Ñow
cell by meridional quadrant spanning the whole convective
envelope.

To the best of our knowledge, our model also di†ers from
all related models recently published in that it makes use of
a solar-like internal di†erential rotation proÐle, i.e., a proÐle
characterized by a latitudinal di†erential rotation through-
out the convective envelope, matching smoothly across a
thin shear layer on a radiative core rotating rigidly at a rate
equal to that of the surface midlatitudes. The use of such a
solar-like angular velocity proÐle has profound conse-
quences for the operation of this class of Ñux transport
dynamo models. In particular, the global morphology of the
solution is largely dominated by the e†ect of the latitudinal
shear, while the radial shear near the core-envelope inter-
face contributes primarily to the further intensiÐcation of
the toroidal Ðeld. The latter is also favored by our inclusion
of a highÈmagnetic di†usivity contrast between the convec-
tive envelope and underlying radiative core. Although a
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2.7 Overshoot layer dynamo with meridional

circulation

Dikpati and Gilman (2001)
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FIG. 4.ÈTachocline dynamo solutions without meridional circulation
in the convective envelope. (a) Prescribed di†erential rotation pattern
(dotted contours) and tachocline a-e†ect (shaded region) in our computation
domain. (B) and (c) Time-latitude diagrams for the toroidal Ðeld at
r/R\ 0.7 and the surface radial Ðeld (negative Ðelds denoted by black and
positive by white). (d) Dynamo-generated current helicity pattern at
r/R\ 0.7 (black denotes left-handed current helicity and white right-
handed).

FIG. 5.ÈSchematic diagram of the propagation direction following the
Parker-Yoshimura sign rule in di†erent latitude ranges.

5, which plots schematically the a-e†ect and L)/Lr with
latitude (and at a particular depth, r/R\ 0.675), depicts the
direction of dynamo wave propagation according to the
above sign rule. The noncoincidence of the latitudes for the
sign change of L)/Lr (approximately at 36¡ latitude) and of
the a-e†ect (at 30¡ latitude) explains the small wavy domain
between the two equatorward propagating branches.
Figure 4c shows similar evolution of radial Ðeld B

r
o
r@R/1 ;

the only di†erence is that the two equatorward propagating
branches have merged into one. The relatively large turbu-
lent di†usivity between r/R\ 0.7 and 1 has smoothed out
the wavy domain between the two equatorward propagat-
ing branches.

Figure 4d shows the current helicity pattern generated by
this dynamo at r/R\ 0.7, computed simply from BÕ eü Õ Æ $

Even though we Ðnd both left-handed and right-Â B
p
.

handed current helicity, the dominant pattern is left-handed
in the northern hemisphere. In recent observations, both
kinds of current helicity have been found, but a large sta-
tistical survey shows a preference for left-handed current
helicity over right-handed (Pevstov & CanÐeld 1999).
Gilman & Charbonneau (1999) have shown in an extensive
survey of all possible mean Ðeld dynamo models that none
of them, except the Ñux-transport dynamo, is able to theo-
retically predict the dominant left-handed current helicity.
Our dynamo, driven by a tachocline a-e†ect (triple-lobe in
latitude with a dominant positive band at midlatitude) can
produce a left-handed current helicity even without merid-
ional circulation.

4.2. Solution with Meridional Circulation
We found above that without meridional circulation, the

dynamo wave propagation is governed by the sign of the
product of the a-e†ect and L)/Lr and that the cycle period is
determined by the magnitudes of those two quantities and
the di†usivity. We have already pointed out in ° 1 that some
recent calculations have established the importance of
meridional circulation in large-scale kinematic dynamos. As
stated before, the Parker-Yoshimura sign rule is no longer a
constraint for the equatorward propagation of the dynamo
wave ; instead, the direction of meridional Ñow governs the
direction of dynamo-wave propagation in such models.

α-effect due to shear instability
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tistical survey shows a preference for left-handed current
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Gilman & Charbonneau (1999) have shown in an extensive
survey of all possible mean Ðeld dynamo models that none
of them, except the Ñux-transport dynamo, is able to theo-
retically predict the dominant left-handed current helicity.
Our dynamo, driven by a tachocline a-e†ect (triple-lobe in
latitude with a dominant positive band at midlatitude) can
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ional circulation.
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We found above that without meridional circulation, the

dynamo wave propagation is governed by the sign of the
product of the a-e†ect and L)/Lr and that the cycle period is
determined by the magnitudes of those two quantities and
the di†usivity. We have already pointed out in ° 1 that some
recent calculations have established the importance of
meridional circulation in large-scale kinematic dynamos. As
stated before, the Parker-Yoshimura sign rule is no longer a
constraint for the equatorward propagation of the dynamo
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direction of dynamo-wave propagation in such models.
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5, which plots schematically the a-e†ect and L)/Lr with
latitude (and at a particular depth, r/R\ 0.675), depicts the
direction of dynamo wave propagation according to the
above sign rule. The noncoincidence of the latitudes for the
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the a-e†ect (at 30¡ latitude) explains the small wavy domain
between the two equatorward propagating branches.
Figure 4c shows similar evolution of radial Ðeld B

r
o
r@R/1 ;

the only di†erence is that the two equatorward propagating
branches have merged into one. The relatively large turbu-
lent di†usivity between r/R\ 0.7 and 1 has smoothed out
the wavy domain between the two equatorward propagat-
ing branches.

Figure 4d shows the current helicity pattern generated by
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handed current helicity, the dominant pattern is left-handed
in the northern hemisphere. In recent observations, both
kinds of current helicity have been found, but a large sta-
tistical survey shows a preference for left-handed current
helicity over right-handed (Pevstov & CanÐeld 1999).
Gilman & Charbonneau (1999) have shown in an extensive
survey of all possible mean Ðeld dynamo models that none
of them, except the Ñux-transport dynamo, is able to theo-
retically predict the dominant left-handed current helicity.
Our dynamo, driven by a tachocline a-e†ect (triple-lobe in
latitude with a dominant positive band at midlatitude) can
produce a left-handed current helicity even without merid-
ional circulation.

4.2. Solution with Meridional Circulation
We found above that without meridional circulation, the

dynamo wave propagation is governed by the sign of the
product of the a-e†ect and L)/Lr and that the cycle period is
determined by the magnitudes of those two quantities and
the di†usivity. We have already pointed out in ° 1 that some
recent calculations have established the importance of
meridional circulation in large-scale kinematic dynamos. As
stated before, the Parker-Yoshimura sign rule is no longer a
constraint for the equatorward propagation of the dynamo
wave ; instead, the direction of meridional Ñow governs the
direction of dynamo-wave propagation in such models.

without

merid. circ.



IMPRS, 3/2003

The Solar Dynamo

Dieter Schmitt

Title page

Mean-field models

The solar cycle

Long-term variability

Page 31 of 43

JJ II

J I

Back Close

Full Screen

No. 1, 2001 MAGNETIC PARITY SELECTION IN THE SUN 435

FIG. 6.ÈFlux-transport tachocline dynamo solutions. (a) Prescribed
di†erential rotation pattern (dotted contours), meridional circulation (solid
streamlines), and tachocline a-e†ect (shaded region) in our computation
domain. (b) Time-latitude diagram for the toroidal Ðeld at the core-
envelope interface. (c) Time-latitude diagram for the surface radial Ðeld. (d)
Current helicity pattern (white is positive, black is negative) at the core-
envelope interface.

Figure 6 presents the results in four frames similar to Figure
4 of the tachocline a-e†ect dynamo operating with a merid-
ional circulation. Figure 6a repeats everything in Figure 4a
and also shows the streamlines for meridional circulation.

Figure 6b clearly shows how the subsurface equatorward
meridional circulation pushes the pattern of the toroidal
Ðeld toward the equator compared to that in Figure 4b to
produce a double-peak low-latitude butterÑy wing
(conÐned primarily below 40¡). The weak poleward branch
at high-latitude is the consequence of the a)-dynamo
action there in a weakly advective regime. Using a
maximum surface Ñow speed of 17 m s~1, we obtain a cycle
period of about 10.3 yr. We consider Figure 6b to be a
reasonable solar-like butterÑy diagram.

Figure 6c shows the poleward drifting of the surface
radial Ðeld from mid- to high latitudes together with a weak
equatorward drift at low latitudes. This is close to what has
been seen in the observed time-latitude diagram for the
large-scale di†use Ðeld (Wang et al. 1989 ; Dikpati &
Choudhuri 1995). The observed phase relationship between

and namely, that the polar Ðeld reversesBÕ o
r@R/0.7 B

r
o
r@R/1,its sign from positive to negative when the subsurface toroi-

dal Ðeld is negative, is well satisÐed in Figure 6c. This is the
most difficult feature for mean Ðeld kinematic dynamos to
reproduce, and to our knowledge, no dynamos other than
Ñux-transport dynamos can reproduce this phase relation-
ship correctly to such an extent.

The equatorward migration of the subsurface toroidal
Ðeld and the poleward migration of the surface poloidal
Ðeld occur because of a sequence of physical processes as
follows : The a) tachocline dynamo is generating both the
toroidal and poloidal Ðelds in the tachocline, and both of
these components migrate equatorward with the equator-
ward meridional Ñow there. The toroidal Ðelds annihilate
with their opposite-hemisphere counterparts, while the po-
loidal Ðelds join with their opposite-hemisphere counter-
parts to form arches bridging the northern and southern
hemispheres. The anchoring of these arches in the tacho-
cline is broken by the strong upwelling Ñow at the equator.
The poloidal magnetic loops are carried to the surface and
drift poleward with the surface Ñow after being separated
from their counterparts in the opposite hemispheres.

Figure 6d shows, again like Figure 4d, that the bands of
right-handed (positive) current helicity are mixed with
bands of left-handed helicity but that the left-handed
current helicity in this case is more dominant over the right-
handed one compared to the dynamo without meridional
circulation. Therefore, meridional circulation helps create a
better match of the dynamo-generated current helicity at
the overshoot layer with the observed current helicity.

The observed maximum surface meridional Ñow speed of
15È20 m s~1 (and therefore about 1È2 m s~1 Ñow speed at
the base from mass conservation) leads to a cycle period of
about 11 yr. The scaling law between the cycle period and
Ñow speed established in Dikpati & Charbonneau (1999 ;
see eq. [12] there) suggests that a slower (faster) Ñow speed
would not only change the cycle period to be larger
(smaller) than 11 yr but also alter the phase relationship
between the subsurface and the surface signiÐcantly.BÕ B

rThis is true in this class of Ñux-transport dynamo also (plots
not shown here). Therefore, the Ñux-transport dynamo with
a tachocline a-e†ect is competitive with previous dynamos
that successfully reproduce the main features of the solar
cycle.
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FIG. 6.ÈFlux-transport tachocline dynamo solutions. (a) Prescribed
di†erential rotation pattern (dotted contours), meridional circulation (solid
streamlines), and tachocline a-e†ect (shaded region) in our computation
domain. (b) Time-latitude diagram for the toroidal Ðeld at the core-
envelope interface. (c) Time-latitude diagram for the surface radial Ðeld. (d)
Current helicity pattern (white is positive, black is negative) at the core-
envelope interface.

Figure 6 presents the results in four frames similar to Figure
4 of the tachocline a-e†ect dynamo operating with a merid-
ional circulation. Figure 6a repeats everything in Figure 4a
and also shows the streamlines for meridional circulation.

Figure 6b clearly shows how the subsurface equatorward
meridional circulation pushes the pattern of the toroidal
Ðeld toward the equator compared to that in Figure 4b to
produce a double-peak low-latitude butterÑy wing
(conÐned primarily below 40¡). The weak poleward branch
at high-latitude is the consequence of the a)-dynamo
action there in a weakly advective regime. Using a
maximum surface Ñow speed of 17 m s~1, we obtain a cycle
period of about 10.3 yr. We consider Figure 6b to be a
reasonable solar-like butterÑy diagram.

Figure 6c shows the poleward drifting of the surface
radial Ðeld from mid- to high latitudes together with a weak
equatorward drift at low latitudes. This is close to what has
been seen in the observed time-latitude diagram for the
large-scale di†use Ðeld (Wang et al. 1989 ; Dikpati &
Choudhuri 1995). The observed phase relationship between
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r@R/1,its sign from positive to negative when the subsurface toroi-

dal Ðeld is negative, is well satisÐed in Figure 6c. This is the
most difficult feature for mean Ðeld kinematic dynamos to
reproduce, and to our knowledge, no dynamos other than
Ñux-transport dynamos can reproduce this phase relation-
ship correctly to such an extent.

The equatorward migration of the subsurface toroidal
Ðeld and the poleward migration of the surface poloidal
Ðeld occur because of a sequence of physical processes as
follows : The a) tachocline dynamo is generating both the
toroidal and poloidal Ðelds in the tachocline, and both of
these components migrate equatorward with the equator-
ward meridional Ñow there. The toroidal Ðelds annihilate
with their opposite-hemisphere counterparts, while the po-
loidal Ðelds join with their opposite-hemisphere counter-
parts to form arches bridging the northern and southern
hemispheres. The anchoring of these arches in the tacho-
cline is broken by the strong upwelling Ñow at the equator.
The poloidal magnetic loops are carried to the surface and
drift poleward with the surface Ñow after being separated
from their counterparts in the opposite hemispheres.

Figure 6d shows, again like Figure 4d, that the bands of
right-handed (positive) current helicity are mixed with
bands of left-handed helicity but that the left-handed
current helicity in this case is more dominant over the right-
handed one compared to the dynamo without meridional
circulation. Therefore, meridional circulation helps create a
better match of the dynamo-generated current helicity at
the overshoot layer with the observed current helicity.

The observed maximum surface meridional Ñow speed of
15È20 m s~1 (and therefore about 1È2 m s~1 Ñow speed at
the base from mass conservation) leads to a cycle period of
about 11 yr. The scaling law between the cycle period and
Ñow speed established in Dikpati & Charbonneau (1999 ;
see eq. [12] there) suggests that a slower (faster) Ñow speed
would not only change the cycle period to be larger
(smaller) than 11 yr but also alter the phase relationship
between the subsurface and the surface signiÐcantly.BÕ B

rThis is true in this class of Ñux-transport dynamo also (plots
not shown here). Therefore, the Ñux-transport dynamo with
a tachocline a-e†ect is competitive with previous dynamos
that successfully reproduce the main features of the solar
cycle.

deep α-effect favours dipolar, high α-effect quadrupolar solutions



IMPRS, 3/2003

The Solar Dynamo

Dieter Schmitt

Title page

Mean-field models

The solar cycle

Long-term variability

Page 32 of 43

JJ II

J I

Back Close

Full Screen

3. Long-term variations

3.1 Observations

• Variation in cycle length and strength

FIG. 1.ÈBrief look at solar cycle variability ; Fig. 1a is a time series of the smoothed monthly sunspot number, and Fig. 1b the corresponding power
spectrum. Fig. 1c illustrates the anticorrelation existing between the amplitude of the sunspot cycle, (here measured by the peak smoothed monthly sunspot
number) and its duration. This anticorrelation is statistically signiÐcant (linear correlation coefficient r \ [0.37, null hypothesis rejected with probability
0.91). Fig. 1d shows the observed variations in the sunspot cycle period, from 1600 to the present. Cycle periods prior to 1750 (diamonds) are based on 10Be ice
core data, and taken directly from Beer et al. (1998), with error bars estimated by these authors to be in the range ^0.5È1 yr (^0.75 yr is used here). Later
cycle periods ( Ðlled circles) are estimated from the smoothed monthly sunspot numbers, and are accurate to ^1 month. The straight lines are linear
least-squares Ðts to the variation with time of cycle duration, for the sunspot data only (dotted line), and for the combined 10Be]sunspot data (dashed line). In
the latter case the mean period is 10.83 yr. Fig. 1e shows the cumulative ““ phase error ÏÏ between the actual dates of minima and those computed from the weak
long term trends corresponding to the least-squares Ðts in Fig. 1d. Here as in later Ðgures of this type, a phase error of n corresponds to a full sunspot cycle,
i.e., half a magnetic cycle. The cumulative errors are calculated starting either from the year 1594 (diamonds) or from sunspot cycle one ( Ðlled circles).

odd-even effect (Gnevychev-Ohl)
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• Maunder minimum 1630–1710, grand minima

1
9
9
3
A
&
A
.
.
.
2
7
6
.
.
5
4
9
R

Ribes and Nesme-Ribes (1993)

oscillatory? asymmetric?
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• Cosmogenic isotopes: 14C, 10Be

formed by cosmic rays as spallation products in the atmosphere

flux of galactic cosmic rays anticorrelated with solar activity

long term trend due to geomagnetic field
14C: tree rings, 30-year convolution, long-term trendLONG-TERM INDIRECT INDICES OF SOLAR VARIABILITY 59
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Figure 5.114C measured in tree rings for the past 11 ky. The record is characterised by short-term
variations superimposed to a long-term trend. The short-term variations can be attributed mainly to
solar modulation whereas the long-term trend is mainly the result of variations of the geomagnetic
field intensity during the past 20 ky and possibly some changes within the carbon system.
The period from 1510 AD to 1950 AD is shown in detail. The peak at 1700 AD corresponds to the
maximum of the Maunder minimum, a period famous for its almost complete lack of sunspots. The
steep decrease during the 20th century is due to the Suess effect (dilution of the atmospheric14C
content by the growing combustion of fossil fuel) and an increase in solar activity.

solar activity occurred around 1800 (Dalton Minimum) and 1900. The decreasing
trend in114C as from about 1900, however, is to a large extent of anthropogenic
origin. The increasing rate of fossil fuel consumption led to an increasing amount
of 14C-free CO2 reducing the14C/12C ratio considerably.

The114C record covering the past 11500 years (Fig. 5) is based on tree rings.
Comparison of the ring width between different trees enabled to match the individ-
ual records to a continuous chronology. Before 11500 BP, during the deglaciation,
the vegetation was rather different and the number of trees much sparser. Therefore,
no continuous record is available yet although several floating chronologies are
under construction. Instead of tree rings, other material such as varved sediments
(Hajdas, 1993; Hughen et al., 1998; Kitagawa and Van der Plicht, 1998), corals
(Bard et al., 1990), or stalagmites have been used. The absolute age can be deter-
mined by counting the annual sediment layers or using the U/Th dating technique.
However, all these techniques lead to somewhat larger uncertainties in114C due to
dating difficulties or the fact that they do not record directly the atmospheric114C
(corals, stalagmites).

Since solar variability is at least partly quasi-periodic it is interesting to search
for periodicities. The most famous periodicity of solar variability is the 11-year
Schwabe cycle. Although this periodicity varies considerably between 7 and 18
years since 1750 it seems quite stable and close to 11 years if averaged over longer
time periods. Due to the dampening effect of the carbon cycle system, the Schwabe
cycle is attenuated strongly and difficult to detect in the114C (Fig. 5) (Siegenthaler

Stuiver et al. (1998)
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10Be: ice cores, precipation, 2-year convolution, 11-year cyclesLONG-TERM INDIRECT INDICES OF SOLAR VARIABILITY 61
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Figure 6.10Be records with different time resolutions for different time intervals.
a) Annual10Be concentrations from Dye 3 after removing the short-term fluctuations. b)10Be flux
covering the transition from the last Glaciation into the Holocene . The sharp peaks correspond
probably to quiet Sun periods (e.g. Maunder Minimum).
c) 10Be flux during Marine Isotope Stage 3 mainly. The peak close to 40 ky BP and the long-term
changes are consistent with changes of the global mean production rate induced by the geomagnetic
field intensity.

with the densityρ (g cm−3), the accumulation ratea (cm y−1), and the concentra-
tion c (104 atoms/g). Sinceρ of ice is constant, the fluxF is mainly determined
by the product of concentration and accumulation rate. During the Holocene the
accumulation rate is relatively constant leading to a fluxF that looks much the
same as the concentrationc. During glacial times, however, the accumulation rate
changes by up to a factor of 2. As has been shown in earlier studies the10Be flux
can be considered as proportional to the mean global production rate (Wagner et
al., 2000a).

As can be seen in Fig. 6 the10Be records vary on very different time scales.
The short-term variations of the10Be concentration in Fig. 6a reflect the 11-year

Beer et al. (1994)

cycle possibly continued during Maunder minimum

Dalton minimum, Maunder minimum, Spörer minimum, Wolf

minimum, medieval maximum: potentially correlated with climate
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• Cool star activity: star spots, Ca index, X-ray emission
1
9
9
5
A
p
J
.
.
.
4
3
8
.
.
2
6
9
B

1
9
9
5
A
p
J
.
.
.
4
3
8
.
.
2
6
9
B

1
9
9
5
A
p
J
.
.
.
4
3
8
.
.
2
6
9
B

1
9
9
5
A
p
J
.
.
.
4
3
8
.
.
2
6
9
B

1
9
9
5
A
p
J
.
.
.
4
3
8
.
.
2
6
9
B

1
9
9
5
A
p
J
.
.
.
4
3
8
.
.
2
6
9
B

0.25 : 0.25 : 0.5

Wilson (1978), Baliunas et al. (1995)

fast rotating stars more active

• Origin of long-term modulation of solar cycle hardly understood

– modulation of differential rotation

– stochastic fluctuations of the α-effect

– variation of meridional circulation

– on-off intermittency
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3.2 Modulation of differential rotation

110 N.O. WEISS AND S.M. TOBIAS

Figure 6.Colour coded butterfly diagrams showing the toroidal fields derived from mean field solar
dynamo models. The upper panel (a) shows the cyclic dipolar (asymmetric) activity interrupted by
Grand Minima whilst in panel (b) the possibility of flipping between dipole (antisymmetric) and
quadrupole (symmetric) states at a Grand Minimum is demonstrated (from Beer et al., 1998)

tic fluctuations would be needed to produce a serious effect. On the other hand,
chaotic modulation explains the recurrent features of grand minima, most notably
the persistent 200-year timescale in the proxy record. Any weak stochastic fluctu-
ations need not have any qualitative effect (trajectories would ‘shadow’ motion on
the chaotic attractor) except in deep grand minima when they would certainly be
important.

110 N.O. WEISS AND S.M. TOBIAS

Figure 6.Colour coded butterfly diagrams showing the toroidal fields derived from mean field solar
dynamo models. The upper panel (a) shows the cyclic dipolar (asymmetric) activity interrupted by
Grand Minima whilst in panel (b) the possibility of flipping between dipole (antisymmetric) and
quadrupole (symmetric) states at a Grand Minimum is demonstrated (from Beer et al., 1998)

tic fluctuations would be needed to produce a serious effect. On the other hand,
chaotic modulation explains the recurrent features of grand minima, most notably
the persistent 200-year timescale in the proxy record. Any weak stochastic fluctu-
ations need not have any qualitative effect (trajectories would ‘shadow’ motion on
the chaotic attractor) except in deep grand minima when they would certainly be
important.

Weiss and Tobias (2000)
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3.3 Stochastic fluctuations of the α -effect

α = α0(r, ϑ) + δα(r, ϑ, t)
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log Amplitude vs Phase shift

Sun model
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3.4 Variation of meridional circulation

Charbonneau and Dikpati (2000)

δΨ1034 STOCHASTIC FLUX TRANSPORT MODEL Vol. 543

FIG. 3.ÈButterÑy diagrams for a typical solution with Ñuctuating meridional circulation, here with Fig. 3a is a time-latitude diagram of theu@/u0\ 2.
toroidal Ðeld at the core-envelope interface (r/R\ 0.7). Under the assumptions that toroidal magnetic Ñux ropes form in regions of stronger di†use toroidal
Ðeld, and rise radially to the surface, this is the modelÏs equivalent to a sunspot butterÑy diagram. Fig. 3b is a time-latitude diagram of at the surface. NoteB

rthe strong polar Ðelds. Fig. 3c shows a time series of the magnetic energy at 15¡ latitude along the core-envelope interface. This is the modelÏs (loose)
equivalent to a sunspot number time series.

Let us consider the time series plotted on Figure 3c as a
tracer of the ““ activity cycle ÏÏ, as one does with sunspot
numbers. The duration (D) of each cycle is readily obtained
by dividing the time series into ““ sunspot cycles ÏÏ extending
from one minimum to the next.3 There exist numerous
options for measuring the cycle amplitude (A). In what
follows we use the peak amplitude of each cycle on Figure
3c. The result of this process is two sequences of N discrete
measurements N being determined by the length of(D

n
, A

n
),

the simulation (N ^ 50È60 for most simulations considered
here).

Figure 4c is a correlation plot of cycle duration D versus
amplitude A, for all ““ cycles ÏÏ of the Ñuctuating solution
shown in Figure 3. The spread in cycle period is only about
1 yr, as opposed to Ðve or so for the sunspot number (see
Fig. 1c). In addition one here Ðnds a weak positive corre-
lation between D and A (linear correlation coefficient

3 Since we are working with B2, obviously two such cycles are needed to
cover a full period of the underlying magnetic cycle.

r \ ]0.24). Recall from ° 1 that the sunspot number time
series is characterized by a more signiÐcant anticorrelation
between these two quantities (r \ [0.37 for the analysis of
Fig. 1c). The positive correlation characterizing our simula-
tion results is a direct consequence of the mode of operation
of Ñux transport dynamos ; longer cycles are produced when
the Ñuctuations in meridional circulation happen to be such
that the transit time in the shear layer is longer than
average. The poloidal Ðeld carried from the surface layers is
then subjected to the shear for a longer time interval,
leading to a stronger toroidal Ðeld, everything else being
equal. This inevitably leads to a positive correlation
between cycle duration and amplitude.

Another interesting characteristic of the Ñuctuating solu-
tions is their phase stability. We examine this in a manner
similar to the solar data on Figure 1 ; we Ðrst compute an
average period, then start at the beginning of the time series
and calculate the di†erence between the expected and actual
times of cycle minima, expressed in terms of cycle phase
interval (2n corresponding to a full magnetic cycle, and n to

No. 2, 2000 CHARBONNEAU & DIKPATI 1035

FIG. 4.ÈSome statistical properties of the Ñuctuating solution of Fig. 3. Fig. 4a shows its power spectrum, together with the power spectrum of a
nonÑuctuating solution computed with otherwise identical parameter values (dotted line). Fig. 4b shows a close up on the main power spectrum peak, for a
sequence of solution with increasing Ñuctuation amplitude, all with month. Note the gradual shift to higher frequency as the Ñuctuation amplitudeq

c
\ 1

increases. Fig. 4c is a correlation plot of cycle amplitude vs. duration. Note the weak positive correlation. Fig. 4d shows the cumulative phase error, deÐned as
the expected minus actual epoch of sunspot minimum (see text). As on Fig. 1e, a phase error of n corresponds to a full sunspot cycle. The cycles never wander
too far or for too long away from the mean value, indicating that the solution exhibits good phase locking.

a sunspot cycle). The results are plotted on Figure 4d, which
becomes the modelÏs equivalent to Figure 1e. What is
remarkable here is how tightly locked the period turns out
to be with respect to the average cycle period.4 Despite
marked excursions away from the mean value, within a
dozen or so half-cycles the period always falls back in line.
This is in qualitative agreement with the sunspot data (Fig.
1e). The good phase locking can be traced to the fact that
the fundamental determinant of the cycle period in our
model is the turnover time of the meridional circulation,
which in view of our kinematic formulation is independent
of the large-scale magnetic Ðeld strength (see DC99, ° 4).
Meridional circulation thus regulates the cycle period. This
provides an interesting twist to DickeÏs (1978, 1988) conjec-
ture ; the ““ clock ÏÏ regulating the solar cycle is not a stable
hydromagnetic oscillator residing in the deep, stably strati-
Ðed interior, but rather a noisy ““ hydrodynamic clock ÏÏ
located in the turbulent convective envelope. Furthermore,
the Ñuctuations in cycle duration (phase errors, in DickeÏs

4 Dicke (1978) calls this ““ phase locking ÏÏ, which must not be confused
with the locking of cycle amplitude with duration which characterizes the
stochastically driven mean Ðeld dynamo models extensively studied by P.
Hoyng and collaborators (see Ossendrijver et al. 1996, and references
therein) ; in the latter case, the cycle duration executes a form of random
walk, while maintaining a tight anticorrelation with the cycle amplitude.

terminology) are not due to the Ðnite time required for
magnetic Ñux to go from the interior to the surface, but
rather to the Ðnite time required for meridional circulation
to carry the poloidal Ñux from the surface to the interior !
However, the argument made in Dicke (1978) against
Babcock-Leighton solar cycle models, on the basis of their
presumed inability to exhibit good phase locking, is evi-
dently invalid. His analysis, in conjunction with our model
results, tends instead to support the Babcock-Leighton
picture of the solar cycle. In classical mean Ðeld models, on
the other hand, there is no such externally imposed time-
scale that can regulate the period, and consequently no
phase locking, even though a well-deÐned (anti)correlation
might exist between the cycle amplitude and duration (see,
e.g., Ossendrijver et al. 1996).

3.2. Fluctuations in the Poloidal Source Term
As argued above, the introduction of stochastic Ñuctua-

tions in the poloidal source term is motivated by the fact
that the latter represents, in essence, an average in time and
longitude (and a smoothing in latitude) of a process that is
fundamentally discrete and at least partly stochastic in all
three of these variables. We now explore the e†ects of allow-
ing Ñuctuations in the source term, in conjunction with a
steady meridional Ñow. As in the preceding section, we do
so for varying Ñuctuation amplitudes and coherence times.
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Figure 5 is similar in format to Figure 3, showing
butterÑy diagrams and time series now for a solution where
the amplitude of the source terms Ñuctuates by 200% (i.e.,

with coherence time month. Once agains@/s0\ 2) q
c
\ 1

dynamo action proceeds with little variation in its overall
properties such as the cycle period. Since Ñuctuations are
now restricted to the surface layers, the toroidal Ðeld
butterÑy diagram (Fig. 5a) and time series (Fig. 5c) are much
smoother than in Figure 3, while the surface radial magnetic
Ðeld components still exhibits large spatial Ñuctuations.
Note the occasional appearance of small elongated
““ tongues ÏÏ of magnetic Ñux of opposite polarity to the cur-
rently dominant surface polarity, and stretching to high
latitudes. Such features are in fact observed in synoptic
solar magnetograms (see Wang et al. 1989, Dikpati &
Choudhuri 1995, and Choudhuri & Dikpati 1999 for a
modeling attempt).

Figure 6 is similar in format to Figure 4, showing power
spectra, amplitude-duration plot and phase error analysis
for the Ñuctuating solution of Figure 5. Figure 6bs@/s0\ 2
also shows the main peak in the power spectra of two addi-
tional solutions with and 3, both withs@/s0\ 1 q

c
\ 1

month. Note how the gradual shift to higher cycle frequency
that characterized the solutions with Ñuctuating meridional

circulation (cf. Fig. 4b) is absent here. This lends further
support to our interpretation of this shift in terms of the
enhanced e†ective di†usion associated with the Ñuctuating
component of the meridional Ñow. Once again the solution
exhibits good phase locking (Fig. 6d).

What is most noteworthy is that the cycle amplitude is
now found to anticorrelate with the cycle duration
(r \ [0.23, null hypothesis rejected with probability 0.88),
which compares much better with the real solar cycle. In
addition, the spread in cycle period is now about 2.5 yr,
which is getting closer to the D5 yr of the sunspot data.
This spread increases to about 3.5 yr for s@/s0\ 3.

3.3. Fluctuations in Both Meridional Circulation and
Source Term

The most prominent di†erence in the qualitative behav-
ior of solutions having Ñuctuating meridional circulation (°
3.1) and source term (° 3.2) is perhaps the opposite sign in
the correlation between cycle amplitude and duration (cf.
Fig. 4c and 6c). Recall that the sunspot data shows a signiÐ-
cant anticorrelation between these two quantities (see Fig.
1c). It is then interesting to examine how this correlation
turns out in solutions characterized by stochastic Ñuctua-
tions in both the meridional circulation and source term.

FIG. 5.ÈButterÑy diagrams for representative typical solution with steady circulation but the poloidal source term Ñuctuating at the 200% level (s@/s0\ 2
in eq. [6]). The coherence time is again month. The format is identical to Fig. 3.q

c
\ 1
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FIG. 6.ÈSame as Fig. 4, but for the Ñuctuating solution of Fig. 5 month). There is no longer any shift in the dynamo peak(u@/u0\ 0, s@/s0\ 2, q
c
\ 1

frequency with increasing Ñuctuation amplitude. Note now the weak anticorrelation between cycle amplitude and duration (c).

Table 1 collects some relevant characteristics of a series of
such dynamo solutions : mean cycle duration spread in(D1 ),
cycle duration [*D4 max(D)[ min(D)], slope5 (m, in units
of G2 yr~1), and corresponding linear correlation coefficient
(r ; values near ^1 indicate a statistically signiÐcant
correlation/anticorrelation).

Is there any way in which we can choose one solution
from Table 1 on the basis of comparison with the observed

5 This slope cannot be readily compared to that of the observed solar
cycle anticorrelation of Fig. 1c since the relationship between toroidal Ðeld
strength in our model and the efficiency of sunspot formation is not readily
quantiÐed.

solar cycle? In our opinion the spread in cycle durations is a
better discriminator than the spread in cycle amplitude,
since we have no reliable way to translate magnetic energy
into sunspot numbers. On the other hand, even though no
proper model of the formation of toroidal Ñux ropes from a
di†use Ðeld is available to carry out the aforementioned
translation, sunspots probably do form more readily from
stronger toroidal Ðelds. If this is indeed the case, then at
least the sign of the slope on amplitude-duration plots such
as Fig. 1c represents a meaningful constraint on solar cycle
models.

Returning to Table 1 and restricting ourselves to the
month solutions, one is then led to select that withq

c
\ 1

100% Ñuctuation in the circulation and 200% Ñuctuation in

TABLE 1

SOME CHARACTERISTICS OF FLUCTUATING SOLUTIONS

q
c

D1 *D
Solution u@/u0 s@/s0 (month) (yr) (yr) m r

DC99 . . . . . . . . . . . . 0 0 N/A 9.93 0 N/A N/A
° 3.1 . . . . . . . . . . . . . . 1 0 1 9.76 1.13 ]0.20 ]0.07
Figures 3, 4 . . . . . . 2 0 1 9.52 2.01 ]1.15 ]0.24
° 3.2 . . . . . . . . . . . . . . 0 1 1 9.93 0.97 [1.08 [0.22
Figures 5, 6 . . . . . . 0 2 1 9.94 2.25 [1.00 [0.23
° 3.2 . . . . . . . . . . . . . . 0 3 1 9.88 3.36 [1.49 [0.33
°3.3 . . . . . . . . . . . . . . . 1 1 1 10.64 2.96 [0.22 [0.23
Figures 7, 9 . . . . . . 1 2 1 10.30 4.24 [1.14 [0.33
° 3.3 . . . . . . . . . . . . . . 1 3 1 10.61 6.96 [1.47 [0.47
° 3.3 . . . . . . . . . . . . . . 1 2 0.5 10.32 2.83 [2.41 [0.55
° 3.3 . . . . . . . . . . . . . . 1 2 4 10.63 3.38 [1.03 [0.25
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3.5 On-off intermittency

• overshoot layer dynamo driven by flux tube instability

• lower threshold in field strength for dynamo action

• random fluctuations due to magnetic fields in convection zone
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Schmitt et al. (1996)
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