Plasma Physics 2: Dynamo Theory IMPRS Lecture Lindau, March 3-7, 2003 Manfred Schüssler Max-Planck-Institut für Aeronomie Katlenburg-Lindau, Germany

Magnetic field structure in a stellar convection zone

The plan

1) Formation of magnetic structure
2) Physics of magnetic flux tubes
3) Magnetic structure and the dynamo

Branches of solar physics/astrophysics

Experiment: Simulation

The plan

1) Formation of magnetic structure

- 2) Physics of magnetic flux tubes
- 3) Magnetic structure and the dynamo

Magnetic fields on the Sun

~50,000 km

Sunspots 2001

A big sunspot

Magnetic flux emergence

Emergence of a large sunspot group

Magnetic flux emergence

A flux emergence region

Granulation, sunspots, & small-scale magnetic field

The magnetic network

→ congruent with the downflow regions of the supergranulation flow pattern

Good electrical conductors : "frozen field"

Initially field-free volumes remain field-free

Magnetic flux through a given volume remains constant

Flux expulsion and intermittency

Non-uniform distribution of magnetic flux in the solar photosphere

 E.N. Parker (1963):
 "… persistent motions tend to draw the field into concentrated sheets and filaments."

Stream lines

Simulation of flux expulsion (N.O. Weiss, 1966)

b: final state for Re_m = 40
a: streamlines of the fixed velocity field
c-j: time evolution for Re_m = 1000

- evolution of an initially vertical magnetic field under the influence of a fixed flow field
- kinematic, 2D
- the magnetic flux is expelled from the area of closed streamlines and concentrated in narrow sheets

Flux expulsion and intermittency ■ N.O. Weiss (1964): *first simulations*

(Hupfer, 2001)

Flux expulsion and intermittency ■ N.O. Weiss (1964): *first simulations*

(Hupfer, 2001)

fieldlines

3D Flux expulsion (Galloway, Proctor & Weiss, 1977)

- axisymmetric thermal convection, Boussinesq approx., dynamic
- flux concentration in cool downflow regions (flux tubes)
- final field strength dependent on ratio of viscosity to magn. diffusivity

streamlines

isotherms

Magnetic flux expulsion

Simple example: Kinematical flux expulsion

Initial magnetic field: $\mathbf{B} = (0, 0, B_0)$

Induction equation:

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{B}) + \eta \nabla^2 \mathbf{B}$$

Magnetic field is compressed into a boundary layer, whose thickness is determined by the balance between advection and diffusion:

$$\nabla \times (\mathbf{u} \times \mathbf{B}) + \eta \nabla^2 \mathbf{B} = 0$$

$$\rightarrow -\frac{\partial}{\partial x}(u_z B_x - u_x B_z) = \eta \frac{\partial^2 B_z}{\partial x^2}$$

Narrow boundary layer at $x \simeq 0$: $u_x \simeq -U\pi x/L$ $\partial B_z/\partial z \simeq 0$ along the z-axis $\rightarrow \partial B_x/\partial x \simeq 0 \rightarrow B_x \propto x^2$ \rightarrow first term on l.h.s. negligible \rightarrow equation for $B_z \equiv B(x)$:

$$-\frac{\pi U}{L}\frac{d}{dx}(xB) = \eta \frac{d^2B}{dx^2}$$

$$-\frac{\pi U}{L}\frac{d}{dx}(xB) = \eta \frac{d^2B}{dx^2}$$

Integrate:

$$-\left(\frac{\pi U}{\eta L}\right)(xB) = \frac{dB}{dx} + C$$

[C = 0 since dB/dx = 0 for x = 0]

Introduce magnetic Reynolds number: $R_{\rm m} = UL/\eta$:

$$-\left(\frac{\pi R_{\rm m}}{L^2}\right) \int x \, \mathrm{d}x = \int \frac{\mathrm{d}B}{B}$$

Integrate:

$$-\frac{\pi R_{\rm m} x^2}{2L^2} = \ln \left[\frac{B}{B_{\rm m}}\right]$$

$$\rightarrow \text{Gaussian profile} \quad B(x) = B_{\rm m} \exp\left(-\frac{\pi R_{\rm m} x^2}{2L^2}\right)$$

Boundary layer width: $d \simeq L/R_{\rm m}^{1/2}$.

Determine $B_{\rm m}$ by considering the total magnetic flux:

$$B_0 L = B_{\rm m} \int_0^\infty \exp\left(-\frac{\pi R_{\rm m} x^2}{2L^2}\right) dx = B_{\rm m} L \left(2R_{\rm m}\right)^{-1/2}$$
$$\rightarrow B_{\rm m} \propto R_{\rm m}^{1/2}$$

In a 3D (axisymmetric) case we have $B_{\rm m} d^2 \simeq B_0 L^2$ and thus $B_{\rm m} \propto R_{\rm m}$.

 $R_{\rm m} \gg 1$: Dynamical effects limit the growth before *B* reaches $B_{\rm m}$. Balance beween Lorentz force and inertial force:

$$\frac{1}{4\pi} (\nabla \times \mathbf{B}) \times \mathbf{B} \simeq \rho(\mathbf{u} \cdot \nabla \mathbf{u})$$

$$\frac{B^2}{\pi} \simeq \rho U^2 \quad \rightarrow \qquad B \simeq B_{\text{eq}} \equiv U \sqrt{4\pi\rho}$$

(equipartition field strength)

Solar photosphere: $U \simeq 2 \,\mathrm{km/s}$, $\rho \simeq 3 \cdot 10^{-7} \,\mathrm{g/cm^3} \rightarrow B_{\mathrm{eq}} \simeq 400 \,\mathrm{G}$. Observation: $B \simeq 1500 \,\mathrm{G}!$

Convective intensification

 Flux advection by horizontal flow (flux expulsion)

• Suppression of convection, cooling and downflow

• Evacuation, field intensification

Convective intensification

(Grossmann-Doerth, Sch., & Steiner, 1998)

- 2D, compressible
- radiation, ionization
- Stokes diagnostics
- 2400 x 1400 km²
- 240 x 140 points (10 km hor. resol.)
- = 100, 200, 400 G
- collapse + rebound

3D Radiation MHD simulations A. Vögler et al. (2002)

- start convection without magnetic field
- initially vertical magnetic field of B₀ = 200 G introduced after convection has become quasi-stationary:

Ì

horizontal cuts near surface level

T

<u>I</u>C

horizontal cuts near surface level

Simulation vs. observation

Simulation (20 km resolution) (Vögler et al.)

Vertical magnetic field component

Observation (~250 km resolution)

German Vacuum Tower Telescope, Tenerife (Dominguez Cerdena et al., 2003)

Simulation vs. observation

Simulation (20 km resolution) (Vögler, Shelyag et al.) "G band": molecular lines of CH

Observation (~100 km resolution) (new Swedish 1m telescope, La Palma,

Scharmer et al. 2002)

Magnetic Rayleigh-Taylor instability

Rayleigh-Taylor: dense fluid over light fluid (e.g., water over oil) Here: Magnetic layer in magnetostatic equilibrium

Force balance:

$$\frac{\mathrm{d}}{\mathrm{d}z} \left(p + \frac{B^2}{8\pi} \right) = -\rho g$$
$$z = z_0 : \quad p_1 = p_2 + \frac{B^2}{8\pi}$$

Let B=const. (except for the jump) and $T_1 = T_2 = T = \text{const.}$ Pressure scale height: $H_p = RT/\mu g$.

Pressure gradients at $z = z_0$:

An unstable magnetic layer forming arched flux tubes

1) Formation of magnetic structure

2) Physics of magnetic flux tubes

3) Magnetic structure and the dynamo

Thin flux tube approximation

- All scales along field >> tube diameter
- Expansion perpend. to tube axis
- Truncate: neglect 2nd higher orders
- Quasi-1D approximation:
 String of mass elements moving in a 3D environment

The Thin Flux Tube Approximation

Isolated magnetic flux tube: Bundle of magnetic field lines separated from the non-magnetic surrounding plasma by a tangential discontinuity (current sheet).

Thin magnetic flux tube: An isolated flux tube whose diameter is small compared to all other length scales of the system (scale heights, radius of curvature, wavelengths...)

 \rightarrow Describe the flux tube by the values of the various physical quantities on the tube axis [space curve $\mathbf{r}(l)$, l: arc length].

 \rightarrow zeroth/first order of an expansion perpendicular to the axis

$$\hat{\mathbf{l}} = \frac{\partial \mathbf{r}}{\partial l}$$
 unit tangent vector

$$\hat{\mathbf{n}} = R \frac{\partial \hat{\mathbf{l}}}{\partial l}$$

unit normal vector

 $\hat{\mathbf{b}} = \hat{\mathbf{l}} \times \hat{\mathbf{n}}$ unit binormal vector

$$R = \left| \frac{\partial \hat{\mathbf{l}}}{\partial l} \right|^{-1}$$

radius of curvature

$$\frac{\partial \hat{\mathbf{b}}}{\partial l} = \hat{\mathbf{l}} \times \frac{\partial \hat{\mathbf{n}}}{\partial l} = R_t^{-1} \hat{\mathbf{n}}$$
 radius of tor

Consider the *Walén equation* (combined induction equation and equation of continuity \rightarrow exercise!) and the equation of motion:

$$\frac{d}{dt} \left(\frac{\mathbf{B}}{\rho} \right) = \left(\frac{\mathbf{B}}{\rho} \cdot \nabla \right) \mathbf{u}$$
$$\rho \frac{d\mathbf{u}}{dt} = -\nabla p + \rho \mathbf{g} + \frac{1}{4\pi} (\nabla \times \mathbf{B}) \times \mathbf{B} + \mathbf{F}_{D}$$

With $\mathbf{B}(l) = B(l) \hat{\mathbf{l}}$ along the axis:

$$\frac{B}{\rho}\frac{d\hat{\mathbf{l}}}{dt} + \hat{\mathbf{l}}\frac{d}{dt}\left(\frac{B}{\rho}\right) = \frac{B}{\rho}(\hat{\mathbf{l}}\cdot\nabla)\mathbf{u} \equiv \frac{B}{\rho}\frac{\partial\mathbf{u}}{\partial l}$$

By scalar multiplication with $\hat{\mathbf{l}}$ and noting that a unit vector is perpendicular to its derivative we find:

$$\frac{d}{dt} \left(\frac{B}{\rho} \right) = \frac{B}{\rho} \hat{\mathbf{l}} \cdot \frac{\partial \mathbf{u}}{\partial l} = \frac{B}{\rho} \left(\frac{\partial \mathbf{u} \cdot \hat{\mathbf{l}}}{\partial l} - \mathbf{u} \cdot \frac{\partial \hat{\mathbf{l}}}{\partial l} \right)$$

With $\mathbf{u} \cdot \hat{\mathbf{l}} \equiv u_l, \ \mathbf{u} \cdot \hat{\mathbf{n}} \equiv u_n$:

$$\frac{d}{dt}\left(\frac{B}{\rho}\right) = \frac{B}{\rho}\left(\frac{\partial u_l}{\partial l} - \frac{u_n}{R}\right)$$

 \rightarrow Walén equation in thin flux tube approximation.

Multiply with $\hat{\mathbf{n}}$ and $\hat{\mathbf{b}} \rightarrow \text{normal/binormal components of the time derivative of the tangent <math>\rightarrow$ change of the flux tube path in time:

$$\hat{\mathbf{n}} \cdot rac{d\hat{\mathbf{l}}}{dt} = rac{\partial u_n}{\partial l} + rac{u_l}{R} + rac{u_l}{R}$$
 $\hat{\mathbf{b}} \cdot rac{d\hat{\mathbf{l}}}{dt} = rac{\partial u_b}{\partial l} - rac{u_n}{R_t}$

(with $\hat{\mathbf{n}} = -\hat{\mathbf{l}} \times \hat{\mathbf{b}}$ and $\mathbf{u} \cdot \hat{\mathbf{b}} \equiv u_b$).

Lorentz force on the tube axis:

$$\begin{aligned} \frac{1}{4\pi} (\nabla \times \mathbf{B}) \times \mathbf{B} &= \frac{1}{4\pi} [(\nabla B) \times \hat{\mathbf{l}} + B \nabla \times \hat{\mathbf{l}}] \times B \hat{\mathbf{l}} \\ &= \frac{1}{4\pi} [B(\nabla B \times \hat{\mathbf{l}}) \times \hat{\mathbf{l}} + B^2 (\nabla \times \hat{\mathbf{l}}) \times \hat{\mathbf{l}}]) \end{aligned}$$

Using $(\nabla \times \hat{\mathbf{l}}) \times \hat{\mathbf{l}} = R^{-1} \hat{\mathbf{n}}$ and

$$(\nabla B \times \hat{\mathbf{l}}) \times \hat{\mathbf{l}} = -\nabla B + \hat{\mathbf{l}}(\hat{\mathbf{l}} \cdot \nabla B) \equiv -(\nabla B)_{\perp}$$

 $(\nabla B)_{\perp}$: projection of the gradient on the plane perpendicular to the tangential direction (the cross section of the tube).
$$\mathbf{F}_{L} \equiv \frac{1}{4\pi} (\nabla \times \mathbf{B}) \times \mathbf{B} = -\left[\nabla \left(\frac{B^{2}}{8\pi} \right) \right]_{\perp} + \frac{B^{2}}{4\pi R} \hat{\mathbf{n}}$$

Projections of \mathbf{F}_L on the triad of unit vectors:

$$\mathbf{F}_{L} \cdot \hat{\mathbf{l}} = 0$$

$$\mathbf{F}_{L} \cdot \hat{\mathbf{n}} = -\frac{\partial}{\partial n} \left(\frac{B^{2}}{8\pi}\right) + \frac{B^{2}}{4\pi R}$$

$$\mathbf{F}_{L} \cdot \hat{\mathbf{b}} = -\frac{\partial}{\partial b} \left(\frac{B^{2}}{8\pi}\right)$$

$$(\hat{\mathbf{n}} \cdot \nabla \equiv \partial / \partial n, \hat{\mathbf{b}} \cdot \nabla \equiv \partial / \partial b).$$

 \rightarrow equation of motion:

$$\rho \frac{d\mathbf{u}}{dt} \cdot \hat{\mathbf{l}} = -\frac{\partial p}{\partial l} + \rho \mathbf{g} \cdot \hat{\mathbf{l}}$$
$$\rho \frac{d\mathbf{u}}{dt} \cdot \hat{\mathbf{n}} = -\frac{\partial}{\partial n} (p + \frac{B^2}{8\pi}) + \rho \mathbf{g} \cdot \hat{\mathbf{n}} + \frac{B^2}{4\pi R} + \mathbf{F}_D \cdot \hat{\mathbf{n}}$$
$$\rho \frac{d\mathbf{u}}{dt} \cdot \hat{\mathbf{b}} = -\frac{\partial}{\partial b} (p + \frac{B^2}{8\pi}) + \rho \mathbf{g} \cdot \hat{\mathbf{b}} + \mathbf{F}_D \cdot \hat{\mathbf{b}}$$

Continuity of normal stress at the interface between flux tube and its environment:

$$p + {B^2\over 8\pi} = p_e$$

Thin tube: consider only the first derivatives in normal/binormal direction \rightarrow already fixed by continuity condition above.

External hydrostatic equilibrium:

$$abla p_e \;=\;
ho_e {f g}$$

Resulting eqs. of motion:

$$\begin{split} \rho \, \frac{d \mathbf{u}}{dt} \cdot \hat{\mathbf{l}} &= -\frac{\partial p}{\partial l} + \rho \, \mathbf{g} \cdot \hat{\mathbf{l}} \\ \rho \, \frac{d \mathbf{u}}{dt} \cdot \hat{\mathbf{n}} &= (\rho - \rho_e) \, \mathbf{g} \cdot \hat{\mathbf{n}} + \frac{B^2}{4\pi R} + \, \mathbf{F}_D \cdot \hat{\mathbf{n}} \\ \rho \, \frac{d \mathbf{u}}{dt} \cdot \hat{\mathbf{b}} &= (\rho - \rho_e) \, \mathbf{g} \cdot \hat{\mathbf{b}} + \, \mathbf{F}_D \cdot \hat{\mathbf{b}} \end{split}$$

Perpendicular directions:

buoyancy force, curvature force & aerodynamic drag force.

Thin flux tube equations with rotation

$$\rho_i \frac{D\mathbf{U}}{Dt} \cdot \mathbf{l} = -\frac{\partial p_i}{\partial l} + \rho_i (\mathbf{g} - R \,\Omega^2 \mathbf{e}_R) \cdot \mathbf{l} + 2\rho_i (\mathbf{U} \times \mathbf{\Omega}) \cdot \mathbf{l}$$

$$\rho_{i} \frac{D\mathbf{U}}{Dt} \cdot \mathbf{n} = \frac{B^{2}}{4\pi R_{c}} + (\rho_{i} - \rho_{e})(\mathbf{g} - R \Omega_{e}^{2} \mathbf{e}_{R}) \cdot \mathbf{n} + \rho_{i} R (\Omega_{e}^{2} - \Omega^{2}) \mathbf{e}_{R} \cdot \mathbf{n} + 2\rho_{i} (\mathbf{U} \times \mathbf{\Omega}) \cdot \mathbf{n} + \mathbf{F}_{D} \cdot \mathbf{n}$$

$$\begin{split} \rho_i \frac{D\mathbf{U}}{Dt} \cdot \mathbf{b} &= (\rho_i - \rho_e)(\mathbf{g} - R\,\Omega_e^2 \mathbf{e}_R) \cdot \mathbf{b} + \\ &+ \rho_i R\,(\Omega_e^2 - \Omega^2) \mathbf{e}_R \cdot \mathbf{b} + 2\rho_i(\mathbf{U} \times \mathbf{\Omega}) \cdot \mathbf{b} + \mathbf{F}_D \cdot \mathbf{b} \end{split}$$

Aerodynamic drag force \rightarrow pressure disturbance due to relative motion of the (locally cylindric) flux tube w.r.t. its environment:

(a)

(c)

Aerodynamic drag force \rightarrow pressure disturbance due to relative motion of the (locally cylindric) flux tube w.r.t. its environment:

$$(\pi a^2) \, {f F}_D \; = \; C_D \,
ho_e \, a \, v_\perp^2 \, \hat{f k}$$

 C_D : drag coefficient, a: tube radius, and

$$v_{\perp}^2 = (\mathbf{v} \cdot \hat{\mathbf{k}})^2 = [\mathbf{v} - \hat{\mathbf{l}} (\mathbf{v} \cdot \hat{\mathbf{l}})]^2$$

 $\mathbf{v} = \mathbf{v}_e - \mathbf{u}$: relative velocity between the flux tube and the surrounding fluid moving with velocity \mathbf{v}_e . $\hat{\mathbf{k}}$: unit vector in the direction of the component of \mathbf{v} perpendicular to the tube axis. Transversal forces per unit length of an tube in thermal equilibrium:

$$F_{\rm C} = \frac{B^2}{4\pi R} \cdot \pi a^2 = \frac{B^2 a^2}{4R}$$

$$egin{aligned} F_{\mathrm{B}} &= (
ho -
ho_e)g \cdot \pi a^2 = rac{p_e - p}{H_p} \cdot \pi a^2 = rac{B^2 a^2}{8 H_p} \ F_{\mathrm{D}} &= C_D
ho_e v_\perp^2 a \end{aligned}$$

With $B_{\rm eq}^2 = 4\pi \rho_e v_c^2$:

$$\frac{F_{\rm B}}{F_{\rm D}} \simeq \left(\frac{a}{H_p}\right) \left(\frac{B}{B_{\rm eq}}\right)^2 \left(\frac{v_c}{v_{\perp}}\right)^2$$
$$\frac{F_{\rm C}}{F_{\rm D}} \simeq \left(\frac{a}{R}\right) \left(\frac{B}{B_{\rm eq}}\right)^2 \left(\frac{v_c}{v_{\perp}}\right)^2$$

 \rightarrow drag force dominates for sufficiently thin flux tubes

Buoyant rise of a horizontal flux tube: $\mathbf{g} \cdot \hat{\mathbf{n}} = g, R \to \infty$ $T = T_e \& p < p_e \to \rho < \rho_e \to \text{upward buoyancy force!}$ Stationary state: buoyancy = drag

tationary state. Dubyancy – drag

$$(\rho - \rho_e)g \cdot \pi a^2 + C_D \rho_e v^2 a = 0$$
$$v^2 = \left(\frac{p_e - p}{p_e}\right) \left(\frac{g\pi a}{C_D}\right) = \left(\frac{\pi}{C_D}\right) \left(\frac{B^2}{8\pi\rho_e}\right) \left(\frac{a}{H_p}\right)$$
$$\left(\frac{v}{v_A}\right)^2 = \left(\frac{\pi}{2C_D}\right) \left(\frac{a}{H_p}\right)$$

Equipartition field: $v_{\rm A} = v_c \simeq 100 \,\mathrm{m/s}$

- $H_p \simeq 6 \cdot 10^4 \,\mathrm{km}, a \simeq 6 \cdot 10^3 \,\mathrm{km} \,(\Phi_m = 10^{22} \,\mathrm{Mx})$
- → $v \simeq 30 \text{ m/s}$ → rise time through the convection zone (200,000 km) is about 2 months $\ll 11 \text{ years}$
- \rightarrow magnetic flux storage problem

Convective instability

Stellar stratification

$$\nabla \equiv \frac{\mathrm{d}\ln T}{\mathrm{d}\ln p} \qquad \text{logarithmic temperature gradient}$$

adiabatic stratification :
$$\nabla = \nabla_{ad} = \frac{\gamma - 1}{\gamma}$$

 ${\rm super/subadiabatic}: \qquad \nabla = \nabla_{ad} + \delta$

 $\delta > 0$: convectively unstable $\delta < 0$: convectively stable

hydrostatic equilibrium :
$$\frac{\mathrm{d}p}{\mathrm{d}z} = -\varrho g \equiv -\frac{p}{H_{\mathrm{p}}}$$

pressure scale height :
$$H_{\rm p} = \frac{p}{\varrho g} = \frac{RT}{\mu g}$$

$$\frac{1}{H_{\varrho}} \equiv \frac{\mathrm{d}\ln\varrho}{\mathrm{d}z} = \frac{\mathrm{d}\ln p}{\mathrm{d}z} \cdot \frac{\mathrm{d}\ln\varrho}{\mathrm{d}\ln p} = \frac{1}{H_{\mathrm{p}}} \left(1 - \frac{\mathrm{d}\ln T}{\mathrm{d}\ln p}\right) = \frac{1 - \nabla}{H_{\mathrm{p}}}$$

 z_1 : constant vertical displacement external pressure at the new position: $p_{e0} + p_{e1}$

$$p_{\mathrm{e}1} = -rac{p_{\mathrm{e}0}z_{\mathrm{1}}}{H_{\mathrm{pe}}}$$

external density at the new position: $\rho_{e0} + \rho_{e1}$

$$\varrho_{\rm e1} = -\frac{\varrho_{\rm e0} z_1 (1-\nabla)}{H_{\rm pe}}$$

total pressure perturbation : $p_{\mathrm{e}1} = \frac{B_0 B_1}{4\pi} + p_1$

Mass & magnetic flux conservation:

$$\frac{B}{\varrho} = \text{const.} \quad \rightarrow \quad \frac{B_1}{B_0} = \frac{\varrho_1}{\varrho_0}$$

Insert into equation for total pressure perturbation:

$$\gamma \frac{\varrho_1}{\varrho_0} = \frac{p_1}{p_0} = -\frac{p_{\rm e0}}{p_0} \frac{z_1}{H_{\rm pe}} - \frac{B_0^2}{4\pi p_0} \frac{\varrho_1}{\varrho_0}$$

With $\beta \equiv 8\pi p_0/B_0^2$ we have:

$$\frac{\varrho_1}{\varrho_0} \left(\gamma + \frac{2}{\beta} \right) = -\frac{(p_0 + B_0^2/8\pi)}{p_0} \frac{z_1}{H_{\rm pe}} = -\left(1 + \frac{1}{\beta} \right)$$

 $\beta \gg 1$ in the deep solar convection zone \rightarrow

$$\frac{\varrho_1}{\varrho_0} = -\left(\frac{1+1/\beta}{\gamma+2/\beta}\right)\frac{z_1}{H_{\rm pe}} \simeq \left[\frac{1}{\gamma} + \frac{1}{\beta\gamma}\left(1-\frac{2}{\gamma}\right) + O(\beta^{-2})\right]\frac{z_1}{H_{\rm pe}}$$

Perturbation of the buoyancy force:

$$\begin{split} F_{\mathrm{B1}} &= (\varrho_{\mathrm{e1}} - \varrho_{\mathrm{1}})g = \left\{ -\varrho_{\mathrm{e0}}(1 - \nabla) + \varrho_{0} \left[\frac{1}{\gamma} + \frac{1}{\beta\gamma} \left(1 - \frac{2}{\gamma} \right) \right] \right\} \frac{gz_{\mathrm{1}}}{H_{\mathrm{pe}}} \\ &= \left[-1 + \frac{\gamma - 1}{\gamma} + \delta + \frac{1}{\gamma} + \frac{1}{\beta\gamma} \left(1 - \frac{2}{\gamma} \right) \right] \frac{\varrho_{0}gz_{\mathrm{1}}}{H_{\mathrm{pe}}} \\ &= \left[\beta\delta + \frac{1}{\gamma} \left(1 - \frac{2}{\gamma} \right) \right] \frac{z_{\mathrm{1}}}{H_{\mathrm{p0}}H_{\mathrm{pe}}} \left(\varrho_{0}gH_{\mathrm{p0}} \right) \frac{B_{0}^{2}}{8\pi p_{0}} \\ &= \left[\beta\delta + \frac{1}{\gamma} \left(1 - \frac{2}{\gamma} \right) \right] \frac{B_{0}^{2}z_{\mathrm{1}}}{8\pi H_{\mathrm{p0}}H_{\mathrm{pe}}} \end{split}$$

For stability: [...] $< 0 \rightarrow$

$$\beta \delta < -\frac{1}{\gamma} \left(1 - \frac{2}{\gamma} \right) \rightarrow \beta \delta < 0.12 \quad \text{for } \gamma = 5/3$$

 \rightarrow Strong fields (smaller β) stable in a superadiabatic layer ($\delta > 0$)!?

Simplified treatment (\rightarrow correct stability result): hydrostatic equilibrium along the loop \rightarrow

$$\frac{\varrho_1}{\varrho_0} = \frac{1}{\gamma} \frac{p_1}{p_0} = -\frac{z_1}{\gamma H_{\rm p0}}$$

Perturbation of the buoyancy force:

$$\begin{split} F_{\mathrm{B1}} &= (\varrho_{\mathrm{e1}} - \varrho_{1})g = \left[-\frac{\varrho_{\mathrm{e0}}(1 - \nabla)}{H_{\mathrm{pe}}} + \frac{\varrho_{0}}{\gamma H_{\mathrm{p0}}} \right] g z_{1} \\ &= \dots \\ &= \left(\beta \delta + \frac{1}{\gamma} \right) \frac{B_{0}^{2} z_{1}}{8\pi H_{\mathrm{p0}}^{2}} \end{split}$$

Magnetic curvature force:

$$\frac{B^2}{4\pi R} = \frac{B^2}{4\pi} \frac{z_1''}{(1+z_1'^2)^{3/2}}$$

At loop maximum $(x = \pi/2k)$:

$$z'_1(x) = ka\cos(kx) = 0$$

 $z''_1(x) = -k^2a\sin(kx) = -k^2a$

Sum of buoyancy force and curvature force:

$$F_{\rm B1} + F_{\rm C1} = \left[\left(\beta \delta + \frac{1}{\gamma} \right) \frac{B_0^2}{8\pi H_{\rm p0}^2} - \frac{B_0^2 k^2}{4\pi} \right] a$$
$$= \left[\left(\beta \delta + \frac{1}{\gamma} \right) - 2(k H_{\rm p0})^2 \right] \frac{a B_0^2}{8\pi H_{\rm p0}^2} \qquad \textbf{k=0:}$$
For stability: [...] $< 0 \rightarrow$
$$\beta \delta < -\frac{1}{\gamma} + 2(k H_{\rm p0})^2 \qquad \beta \delta < -\frac{1}{\gamma} \left(1 - \frac{2}{\gamma} \right) \rightarrow \beta \delta < 0.12 \quad \text{for } \gamma = 5/3$$
for $k \rightarrow 0$ (long wavelength): $\beta \delta < -1/\gamma = -0.6$
All flux tubes are unstable in a superadiabatic layer $(\delta > 0)$!!

The plan

1) Formation of magnetic structure

2) Physics of magnetic flux tubes

3) Magnetic structure and the dynamo

Differential rotation generates azimuthal (toroidal) magnetic field

Internal rotation of the Sun as determined by helioseismology

Convection zone rotates similar to surface Core rotates nearly rigidly Steep transition at the bottom of the convection zone; width ~2% R_{sun} Region of strongest shear Dynamo!

Internal rotation of the Sun as determined by helioseismology

Plumes: coherent structures in high-Ra convection

Kerr 1996

Nordlund & Stein 1998

Hierarchical downflow structure in solar convection

Spruit et. al. 1990

Downward "pumping" of magnetic flux by convection (*Brummell 2001*)

Yellow - white: *strong field*

green - blue: weak field

Downward "pumping" of magnetic flux by convection

(Tobias et al. 2001)

convectively unstable

stable layer

Strands of toroidal field generated by downward pumping and differential rotation

(Dorch & Nordlund 2001)

 \Rightarrow No equilibrium without rotation !

- Flux tubes created with $T_i = T_e$ and $\Omega_i = \Omega_e$:
- \rightarrow approach equilibrium position via damped buoyancy and inertial oscillations

How does the magnetic field come to the surface?

•Overshoot layer

2

Origin of sunspots

• Tube expansion and decreasing field strength

7

Origin of sunspots

•Eruption at the solar surface

Origin of sunspots

•Formation of a bipolar sunspot pair/group

Undulatory instability in spherical geometry

Undulatory instability in spherical geometry

Emergence of thin flux tubes

- Toroidal flux tube stored in the subadiabatic overshoot layer
- Undular (Parker) instability
- Rise of one or two flux loops throu

 Simul featu
 (cohe instal

provided that the initial field is $\sim 10^5$ G

Caligari et al. (1995)

Tilt angle of sunspot groups

Origin of the tilt angle and numerical simulation results

15

angle (deg)

tilt

Coriolis force

$\begin{array}{c} 6.0\\ \text{(my 5.8}\\ \text{5.8}\\ \text{5.6}\\ \text{5.6}\\ \text{5.2}\\ \text{5.0}\\ 150 \end{array} \begin{array}{c} 0.2 \text{ km/s}\\ \text{o} 0.2 \text{ km/s}\\$

Tilt angle as f(latitude) initial field strength: *n* Tesla

Expanding motion

The effect of rotation

Buoyantly expanding flux ring

$$\mathbf{F}_{\text{Coriolis}} = 2\rho\Omega \left(u_{\phi}^{}, -u_{R}^{}, 0 \right)$$

→ restoring force

$$\begin{split} \dot{u}_{\phi} &= -2 \ \Omega \ u_{R} \\ \dot{u}_{R} &= 2 \ \Omega \ u_{\phi} \\ \rightarrow \ u_{R}, u_{\phi} \ \propto \ \sin(2 \ \Omega \ t) \end{split}$$

- inertial oscillations perpendicular to the axis of rotation
- amplitude depends on the strength of the buoyancy force

The effect of rotation

Forces on a rising magnetic flux tube: cut through a meridional plane

component of buoyancy force parallel to rotation axis unbalanced

$$\frac{|\mathbf{F}_{\rm C}|}{|\mathbf{F}_{\rm B}|} = \frac{2\rho \,\upsilon_{\rm rise} \,\Omega}{B^2 / (8\pi H_p)} \propto \frac{2\Omega H_p}{\upsilon_{\rm A}}$$

- 1 / "magnetic Rossby number" (Schüssler & Solanki, 1992)
- → loop deflected to higher latitudes if rise time > $1/\Omega$

 \rightarrow Sun: buoyancy dominates for B>10⁵ G

B = 1 Tesla

B = 10 Tesla

Doppler imaging: "starspot" maps

Rapidly rotating stars show spots at high latitudes, often polar spots

Emerging flux tube in a rapidly rotating subgiant

Simulation results for various stellar models & rotation rates

Young (pre-main-sequence) stars

Main-sequence stars

Latitude distributions of emerging flux tubes

2D: Fragmention... avoided by twist

Dynamical fragmentation / vortex dynamics Sch. (1979)

2D: Fragmention avoided by twist

A sufficiently twisted field maintains the coherence of the tube

Increasing twist

Equipartion line

Emonet & Moreno-Insertis (1998)

3D: kink instability

"Sigmoid" shape after emergence

X-ray picture (from Yohkoh satellite)

3D: kink instability

Fan et al. (2001)

3D: rotation stabilizes, even without twist

Abett et al. (2001)

A case for strong fields

Dynamics of rising flux tubes: agreement with the properties of sunspots requires:

criterion for Parker instability satisfied (B > B_{crit})
 flux tubes remains coherent while rising through c.z.
 low-latitude eruption
 correct tilt angle of sunspot groups
 ...

Only satisfied if the field strength is ~10 T (10⁵ G) in the dynamo region at the bottom of the conv. zone How can a field of 10 Tesla (10^5 G) be generated ?

Convective motions are too weak:

$$rac{e_{
m mag}}{e_{
m kin}} \;=\; rac{B^2/8\pi}{
ho \, v_{
m t}^2/2} \simeq 100$$

The energy of the differential rotation in the shear layer is too small by a factor 10

With both effects only about 1 Tesla can be reached

What remains: potential energy of the stratification!

Origin of the 10^5 G (10 Tesla) field

Stretching by differential rotation:

$$\tau \approx \frac{\Delta B}{B} \cdot \frac{d}{\Delta v} \cong \frac{10^5}{10^2} \cdot \frac{10^4 \text{ km}}{0.1 \text{ km/s}} \cong 3 \text{ yr}$$

Dynamical considerations:

Flux tubes: drag force vs. magnetic tension force → tube radius < 100 km

Energetics:

10²⁴ Mx magnetic flux at 10⁵ G field strength : E_{mag} ~ 10³⁹ erg
 100 m/s diff. Rotation over 10⁴ km shear layer: E_{kin} ~ 10³⁸ erg
 → strong cyclic variation of shear layer, unless rapidly replenished

"Explosion" of magnetic flux tubes:

- isentropic flux tube
- rise in superadiabatic convection zone
- hydrostatics along field lines
- violation of pressure equilibrium

$$\frac{B^2}{8\pi} + p_i = p_e$$

 sudden decrease of field strength near summit

"Explosion" of a thin flux tube

"Explosion" of a thin flux tube

"Explosion" of a thin flux tube

"Explosion" of magnetic flux tubes:

$$\Delta T \equiv T_i - T_e = T_{i,0} - T_{e,0} + \frac{\mu g}{\mathcal{R}} (\nabla - \nabla_{\mathrm{ad}}) z$$

$$p_i(z) = p_{i,0} \left(1 - \frac{\nabla_{\mathrm{ad}} z}{H_{i,0}} \right)^{1/\nabla_{\mathrm{ad}}}$$

$$p_e(z) = p_{e,0} \left(1 - \frac{\nabla z}{H_{e,0}} \right)^{1/\nabla}$$

$$p + \frac{B^2}{8\pi} = p_e$$

 sudden decrease of field strength near tube summit

Explosion height as f(initial field strength)

solid line: analytical prediction asterisks: numerical simulation

Explosions also occur in 3D simulations

Resolution: 120×240×120 (Rempel, 2001)

Relevance of the explosion process: Field amplification by conversion of potential energy

source of weak field within convection zone

field amplification at base of convection zone:

 exploded part no longer dynamically relevant

 outflow of buoyant high-entropy plasma

 decrease of gas pressure in the non-exploded part of flux tube

magnetic field intensification

numerical simulations required

Numerical model

magnetic field strength and velocity

entropy

(Rempel & Sch., 2001)

512 × 512

Time evolution of magnetic field strength

• formation of "stumps": $t < \tau_A$

• amplification: $\tau_A < t < 2 \tau_A$

• saturation: $2 \tau_A < t$

 asymptotic field strength determined by entropy difference

Scaling to solar parameters:
 → amplification to 10⁵ G (10 T) possible within ~ 6 months

 $\tau_A = L / v_A$: horizontal Alfvén travel time

Temperature and flows below a sunspot

Temperature and flows below a sunspot

The end...