Optical/NIR studies of the ISM

Interstellar chemistry

Diffuse and translucent molecular clouds

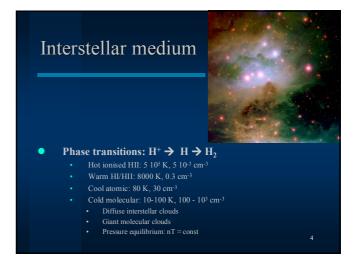
Required modifications

- DIBs: change of ionisation balance
- III. H₃⁺: X-ray induced chemistry, ionisation rate

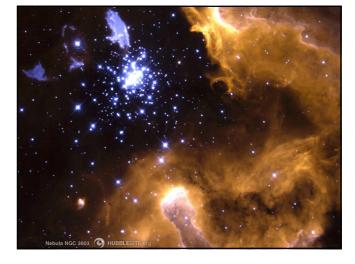
Summary Better observations required

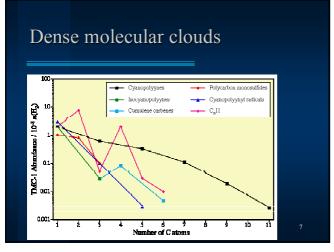
Molecular Astrophysics

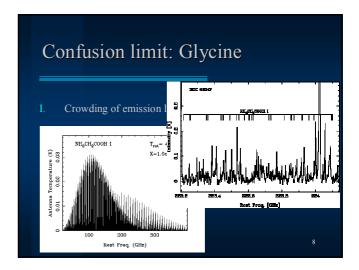
- gas phase chemistry in ISM •
- •
- ۲
- Star formation, HH objects, outflows

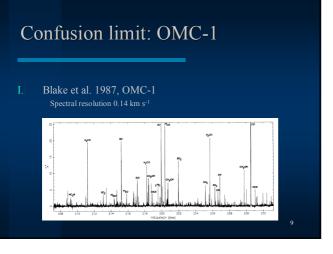

Interstellar molecules

Brief History

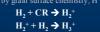

- 1926Eddington, molecules cannot survive ISRF1934Merrill, several strong DIBs detected


- 1963 Radio astronomy, OH, NH₃
 1970 H₂ Copernicus satellite, UV absorption lines


- 1975X-ogen (HCO⁺)2005some 125 gas-phase molecules confirmed

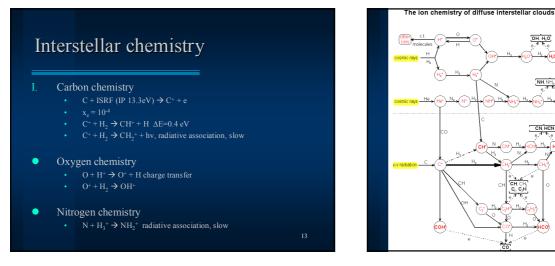


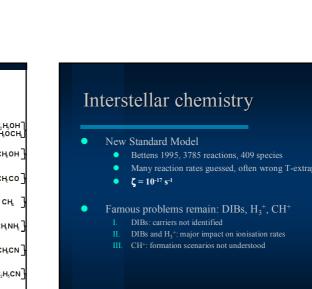
Interstellar chemistry


Theoretical models

Interstellar chemistry

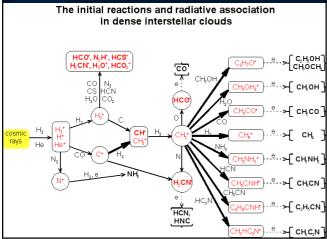
- Ion-molecule reactions
 Ionising source: photons (diffuse clouds), X-rays, cosmic rays (dense clouds)
- Neutral-neutral reactions
- Radiative recombination
- free electrons required
- Dissociative recombination
- Initiation of gas phase chemistry: H₂ required


11



 $H_3^+ + e \rightarrow H_2 + H$

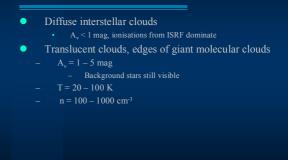
dissociative recombination rate
 Fast (Amano 1988, Larsson 2000)
 Slow (Plasil et al. 2003) minority view

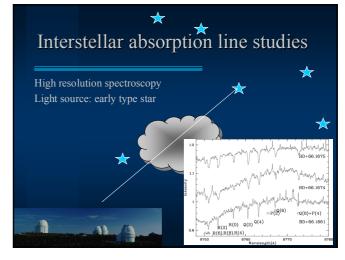


OH HO H, (H,O)

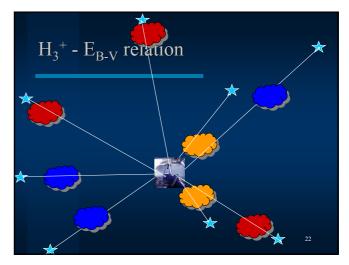
NH NH, NH

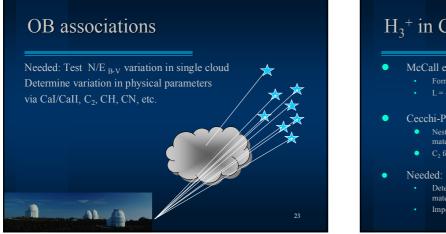
CNHCN NH. H.CN N

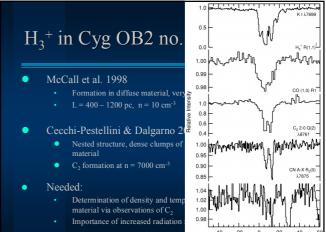

н.

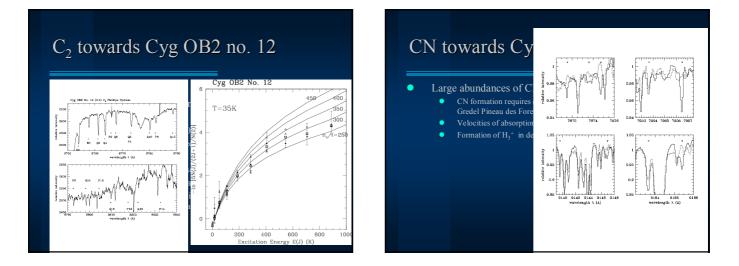

Translucent clouds

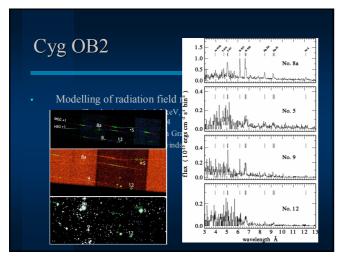
- **Optical/NIR** absorption lines •
 - Interstellar H₃⁺
 - The DIBs
 - Interstellar CH⁺

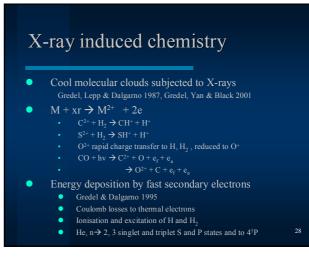

Translucent molecular clouds

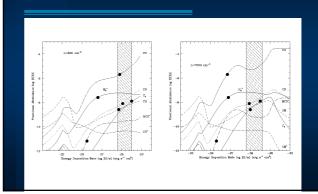


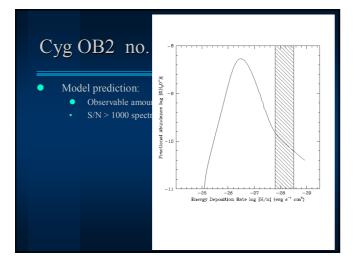


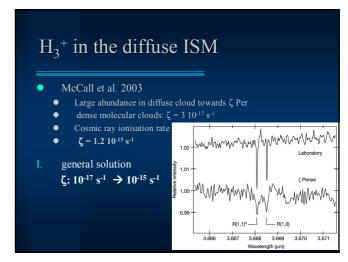








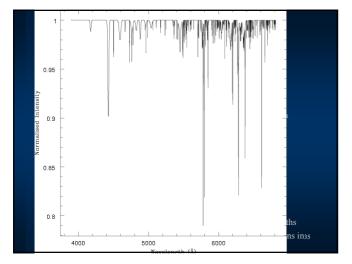

CR & X-ray induced chemistry


Radiation field in dense molecular clouds

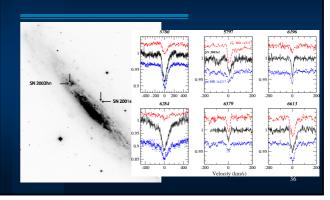
- iii. $H_2 \rightarrow H_2(vJ) + UV$ -photons (Lyman and Werner bands) iv. $H_2(vJ) \rightarrow H_2 + NIR$ photons (E2 cascade)
- Increased photoionisation and photodissociation rates
- X-rays: chemistry modified by
 - Double charged ions drive reactions
 - Induced, diffuse UV radiation field increase photodissociation 29 and photoionisation rates

Cyg OB2 no. 12

The ironic twists in H₃⁺ I. Lepp et al. 1988, large molecules Chemical models including photoelectric heating of LM: large, observable abundance of H₃⁺ Wrong. slow recombination rate used Did not stimulate observations to detect H₃⁺ II. New laboratory measurements: H₃⁺ + e very fast Models: H₃⁺ abundance too low to be detected Stimulated huge observational efforts to detect H₃⁺ III. 2003: large abundance of H₃⁺ detected in diffuse ISM


Ionisation rate must be increased

Optical/NIR absorption line studies


C₂ homonuclear molecule

- thermal population among X v=0 J=0,2,4 \rightarrow T_{kin}
 - A-X Philips system and intercombination transitions → n

CN violet – red system			
		Doppler b values, n, n _e	
CaI/CaII			
		electron densities	
СН			
		hydrogen column density	
H_3^+			
		ionisation rates	34

The diffuse interstellar bands

DIB carriers Carriers of DIBs Fundamental role in ionisation balance Liszt 2003 PAH grain neutralisations Heating balance: radiative and dielectronic recombination of charged ions

 $PAH^- + H^+ \rightarrow PAH + H$ rapid destruction of protons

Ionisation rate must be increased

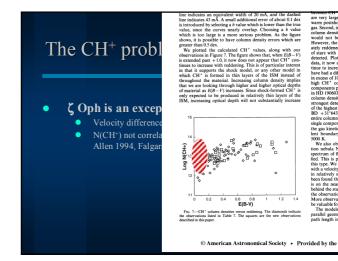
The CH⁺ problem

$N_{obs}/N_{model} = 1000$

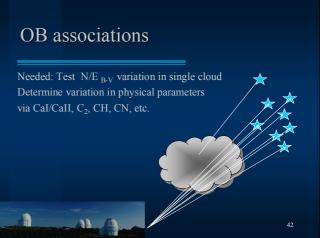
$\Delta E=0.4 \text{ eV}$

Thermal formation scenarios

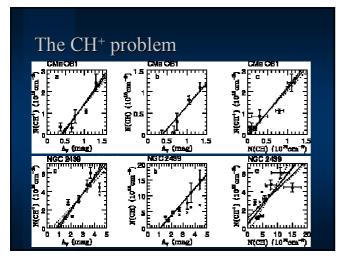
- Pineau des Forets et al. 1986: C-type shocks
- Dissipation of interstellar turbulence, boundary layers


38

- Predictions & earlier observations


 - N(CH⁺) not correlated with E_{B-V}

The CH⁺ problem LAMBERT, SHEFFER, AND CRANE Vol. 359 CN line. The small dit and CO main comport f the CN in the second n compo the CC b) CH⁺ Profil The CH+ is very of 3.49


city splitting b

©2003 J.C.C

7

The CH⁺ problem

N(CH⁺) ~ E_{B-V}

- Tight correlation in single translucent clouds
- Correlation is absent if sample contains too many different
- lines of sight
- Pleiades, Cep OB4: correlation absent
- Radial velocities agree within errors
 - Earlier results with v(CH) v(CH⁺) > 4 km s⁻¹ cannot be reproduced: upper limit to shock velocities
- C_2 observations \rightarrow n, T
 - CH⁺ formation sites in cool gas

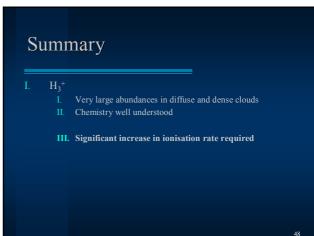
Interstellar CH⁺ 1.5-= 22 = 20 0.999 0.998 0.998 (CH⁺) 0.996 0.997 0.996 **Ŷ** 0.994 0.995 0.992 0.994 СН СН 7 0.99 0.993 's per A 2 8 10 0 4 6 v (km/s)

Summary

I. CH⁺ formation: mystery remains

- I. Single shocks don't work
 - Firm statement after systematic studies in single translucent molecular clouds

• Dissipation of turbulence


- CH⁺ formation in cool gas
- II. Non-Maxwellian chemistry from super-thermal C^+ or H_2 III. Multiple criss-crossing shocks at low velocities no strong
- heating
- I. Fast formation in high-ionisation zones I. Not the general formation scenario

Summary

DIBs

- I. Huge progress in recent years
- II. PAHs, PAH cations
- III. Needed
 - I. Systematic studies of single clouds, determination of physic
 - parameters using diatomics and ions
 - n. Accurate laboratory wavelengths required
 - in. The clusters, very low matrix shifts and broaden
- IV. Dramatic effect on ionisation equilibrium

47

