

Dynamics of magnetic flux tubes in giant stars and close binary stars

Volkmar Holzwarth, Max–Planck–Institut für Aeronomie 🌋

- 1. Magnetic flux tube model
- 2. Flux tubes in giant stars
- 3. Flux tubes in close binaries
- 4. Drag instability

The active Sun

Flux tube model

- Storage of magnetic flux: toroidal flux tubes in mechanical equilibrium in the overshoot-region, parallel to the equatorial plane
- Evolution:

instabilities lead to formation of **rising** flux loops

⇒ Flux eruption at solar surface and magnetic activity

side view

Mechanical equilibrium

• Assumption: Stationary flux tube with internal flow, parallel to equatorial plane

$$\rho_{\rm i} = \rho_{\rm e}$$

 $R = \text{const.}$

$$\mathbf{v}_{\mathrm{i}} > \mathbf{v}_{\mathrm{e}}$$

 \Rightarrow **non-buoyant** flux ring, curvature force balanced by Coriolis

force

Linear stability analysis

• Eigenvalue problem:

Decomposition of displacements $\xi = (\xi_t, \xi_n, \xi_b)^T$ in eigenmodes

$$\xi(\phi,t) = \hat{\xi}e^{i(m\phi+\omega t)}$$

with eigenfrequency ω and azimuthal wave number m

- If critical magnetic field strength B_{crit} is exceeded: $\Im(\omega) < 0$
- \Rightarrow Unstable perturbations and formation of rising flux loops

Stability diagram

dark shading: m = 1, light shading: m = 2

V. Holzwarth, MPAe, Oct'02

Non-linear evolution and eruption

P. Caligari, Diss. 1995, Uni Freiburg

Magnetic flux tubes in binaries: WHY?

• Close binaries with cool, evolved components:

fast rotation and
deep convection zones

strong magnetic activity (e.g., RS CVn and BY Dra systems)

- Observations:
 - huge starspots covering > 20% of visible hemisphere

 \Rightarrow

- spots at high and polar latitudes (polar caps)
- non-uniform surface coverage: spot clusters at *preferred longitudes*, frequently in opposite quadrants
- ⇒ Investigation of influence of tidal effects on flux tube dynamics and surface distribution of starspots

Binary model

- Assumptions:
 - close (detached) system with active component $M_* = m M_{\odot}$ and companion star $M_{co} = qM_*$ on **circular** orbits
 - spin axes parallel, synchronized rotation
 - Kepler's law with $m = 1, q = 1, \mathbf{T} = \mathbf{1} \dots \mathbf{10} \,\mathrm{d}$ \implies separation $a \simeq 5 \dots 25 \mathrm{R}_{\odot}$
 - active star: 'perturbed' single star model companion star: point mass

Influence of companion star

- Tidal effects treated in **lowest-order** perturbation theory:
 - deformation of the stellar structure $\Psi_{\rm tide}/\Psi_* \propto \epsilon^3 \cos{(2\phi)}$

 $\Rightarrow \pi$ -periodic dependence of tidal effects on longitude ϕ

Binary model

- Assumption: close detached system, circular orbits, synchronized rotation; stellar masses $M_* = M_{\rm co} = 1 \,{\rm M}_{\odot}$ and orbital periods $T = 1 \dots 5 \,{\rm d}$, \Rightarrow separation $a \sim 5 \dots 15 \,{\rm R}_{\odot}$
- Tidal effects treated in **lowest-order** perturbation theory
 - deformation of the stellar structure: $\Psi_{\text{tide}}/\Psi_* \propto \epsilon^3 \cos(2\phi)$
 - tidal forces:

e.g. $g_{\text{eff},\phi}/g_* \propto \epsilon^3 \sin(2\phi)$ - $\epsilon^3 = \left(\frac{r}{a}\right)^3 \sim 10^{-2} \dots 10^{-4}$

 $\Rightarrow \pi$ -periodic dependence of tidal effects on longitude ϕ

Linear stability analysis

 Periodic azimuthal variation of equilibrium quantities along flux rings due to stellar deformation

- \Rightarrow EV problem for displacement vector $\xi(\phi)$ and eigenfrequency ω consists of ODE's with periodic coefficients (Hill-type problem)
- ⇒ Solutions $|\xi| = |\xi(\phi)| \neq \text{const.}$, i.e., envelope varies with longitude (cf. single star: $|\xi| = \text{const.}$, i.e., constant envelope at all longitudes)

Eigenvalue problem

• Linearized equation of motion for small displacement $\xi(\phi, t)$:

$$\xi'' + \left[\mathcal{M}_{\phi} + i\omega\mathcal{M}_{\phi t}\right]\xi' + \left[\mathcal{M}_{\xi} + i\omega\mathcal{M}_{t} - \omega^{2}\mathcal{M}_{tt}\right]\xi = 0$$

with

$$\xi(\phi + 2\pi) = \xi(\phi)$$
 , $\xi'(\phi + 2\pi) = \xi'(\phi)$

and π -periodic coefficient matrices

$$\mathcal{M}_{\dots}(\phi + \pi) = \mathcal{M}_{\dots}(\phi)$$

 \Rightarrow Ansatz for eigenmode $\xi = (\xi_{t}, \xi_{n}, \xi_{b})^{T}$

$$\xi(\phi,t) = \left(\sum_{k=-\infty}^{\infty} \hat{\xi}_k e^{ik\phi}\right) e^{i(m\phi+\omega t)}$$

Coupling of wave modes

• EV problem yields 3-term recursion formula

$$\mathcal{L}_{m+k}\hat{\xi}_{k-2} + \mathcal{C}_{m+k}\hat{\xi}_{k} + \mathcal{R}_{m+k}\hat{\xi}_{k+2} = 0 \quad , \qquad \forall k$$

 \Rightarrow Coupling of wave modes $n = m, m \pm 2, m \pm 4, \dots$ due to tidal effects:

Eigenfunctions

- Periodic azimuthal variation of envelope, $\Delta |\xi|/|\xi| \sim 5...20\%$, orientation of $|\xi|_{\text{max}}$ depends on equilibrium configuration
- Assumption: probability of loop formation $W_{\text{rise}} \propto |\xi|$
- \Rightarrow **'Preferred longitudes'** of loop formation in overshoot-region

Growth times

- quantitative: very small difference compared to single star results, $\mathcal{O}(\Delta \tau / \tau) \ll \epsilon^3$
- qualitative: 'instability background' with long growth times

 \Rightarrow Changes in τ insignificant for erupting flux tubes

Resonant instabilities

- Coupling of wave modes with wave numbers n and n + 2 due to tidal interaction
- wave modes with similar frequencies, $\Re(\omega_n) \simeq \Re(\omega_{n+2})$
- $\Rightarrow \text{ Resonant instabilities,}$ with long growth times
 and large $\Delta |\xi| / |\xi|$

Simulations

• Sampling of longitudinal dependence of flux tube dynamics:

modes of non-linear evolution:
 single-loop tubes (m = 1) & &

double-loop tubes
$$(m = 2)$$

Localized perturbation

- in-phase superposition of wave modes with $m = 1 \dots 5$
- $\Rightarrow \text{ largest displacement, } \xi_{\max},$ at longitude ϕ_s

Time between perturbation and eruption (in years)

V. Holzwarth, MPAe, Oct'02

Latitudinal distribution

Longitudinal distribution

- in the overshoot-region: initial perturbation localized around longitude ϕ_s
- at the *surface*: eruption at longitude ϕ_a

Longitudinal spot clusters

Results for $T = 2 \,\mathrm{d}$

- single-loop tubes: insignificant asymmetries in longitudinal spot distribution
- double-loop tubes: considerable non-uniform longitudinal spot distributions
- orientations depend on initial field strength and latitude
- ⇒ 'Preferred longitudes'

Surface distributions

 $B_s = 8.10^4 G (82\%)$ $B_s = 11.10^4 G (47\%)$ $B_s = 14.10^4 G (15\%)$

- no eruptions at **low** latitudes (below $\lambda \leq 25^{\circ}$)
- π -periodicity of tidal effects causes spot clusters on **opposite** sides of the hemisphere

Dependence on system period ${\cal T}$

• Strong decrease of spot clustering and tidal effects for larger system periods / binary separations

V. Holzwarth, MPAe, Oct'02

Reasons

• Resonance effect:

congruency between π -periodicity of tidal effects and structure of *double-loop* flux tubes

• Cumulative effect:

non-axial symmetric influence of companion star adds up during long rise (several months) until eruption

Summary

- Observations: indications for preferred longitudes in spot distribution on close binary components
- Hypothesis: preferred longitudes due to proximity effects of companion star
- Linear analysis & simulations: *preferred longitudes* exist in overshoot region and at stellar surface
- Result: small tidal effects cause considerable non-uniformities in spot distributions

$$\epsilon^3 = \left(\frac{r}{a}\right)^3 < 10^{-2} \quad \longrightarrow \quad \text{spot clusters,} \sim 180^{\,\text{o}} \text{ apart}$$

Magnetic flux tubes in giants: WHY?

Observations of giants in the HR domain K0–K3 III–IV indicate

- a significant drop of coronal X-ray emission
- the onset/increase of strong stellar winds
- ⇒ 'Coronal Dividing Line' (CDL)

Interpretation of the CDL

Change of the **magnetic field topology** in the stellar atmosphere

closed coronal loops \leftrightarrow 'open' field lines

Simulations

• post-main-sequence evolution of stars with $M_* = 1 \dots 3 M_{\odot}$

• stellar models with $0.35 \gtrsim r_{\rm core}/R_* \gtrsim 0.15$

 \Rightarrow flux tube model extended to post-MS stars

Erupting flux tubes

 $M_* = 1 \,\mathrm{M}_{\odot}$ $T_{\mathrm{eff}} = 4759 \,\mathrm{K}$ $r_{\mathrm{core}} = 0.21 \,\mathrm{R}_*$

side view

Trapped flux tubes

 $M_* = 1 \,\mathrm{M}_{\odot}$ $T_{\mathrm{eff}} = 4735 \,\mathrm{K}$ $r_{\mathrm{core}} = 0.18 \,\mathrm{R}_*$

side view

Erupting vs. buried flux tube evolution

erupting flux tube

buried flux tube

Trapping mechanism

• Forces breakdown at the crest of the rising loop: smaller $\mathcal{R} = R_{eq}/R_* \Longrightarrow$ larger \mathbf{f}_{curv} and smaller \mathbf{f}_{buoy} at r_{high}

 \Rightarrow **Trapping** of magnetic flux tubes for $\mathcal{R} < \mathcal{R}_{crit}$

Polytropic layer model

• polytropic stratification:

$$p(r) = p_0 \eta(r)^{1/\nabla^*}$$
 and $\rho(r) = \rho_0 \eta(r)^{1/\nabla^* - 1}$

with $g(r) \sim r^{-\sigma}, \nabla^* = \frac{\gamma^* - 1}{\gamma^*}$ and $\eta(r) = 1 - \frac{1}{\sigma - 1} \nabla^* \frac{r_0}{H_{p0}} \left(1 - \left(\frac{r_0}{r}\right)^{\sigma - 1} \right)$

• inside: $\nabla^* = \nabla_{ad}$ (adiab.), outside: $\nabla^* = \nabla_{ad} + \delta_e$ (superadiab.) $\rho_{i,0}$ is adjusted to assure conservation of mass inside the tube

Polytropic layer model vs. simulation

 $|\mathbf{f}_{\mathrm{out}}/\mathbf{f}_{\mathrm{in}}|$ at uppermost tube element

simulation

polytropic layer model

 R_{pl} : radius of polytropic sphere

Radial trajectories

Parameter dependence

Hardly any dependence of the trapping mechanism on

- rotation rate
- growth time / initial magnetic field strength
- magnetic flux / drag force
- initial depth of equilibrium
- detailed stellar stratification
- ⇒ Trapping mechanism dominated by $\mathcal{R} = R_{eq}/R_* \propto r_{core}/R_*$ i.e. depends on **evolutionary stage** of the post-MS star

Importance for the 'Coronal Dividing Line'

- trapping of flux tubes at all latitudes for $r_{\rm core} < 0.18 \dots 0.2 \,\mathrm{R}_*$ $(T_{\rm eff} = 4750 \dots 4900 \,\mathrm{K} \Rightarrow \mathrm{G7}-\mathrm{K0}$, close to the left of the CDL)
- ⇒ Flux tube trapping is an explanation for 'Coronal Dividing Line'

Summary

- Observations: decrease of coronal X-ray emission for giants cooler than spectral type K0-K3 ⇒ Coronal Dividing Line (CDL)
- Theory: change of coronal magnetic field structure from closed, large-scale coronal loops to mainly open field lines
- Simulations: onset of flux tube trapping in HRD \approx CDL
- **Result:** change from closed to open field structure can be explained by the *'buried flux tube'* model.

Drag instability

- *Simulations:* **unexpected eruptions** of assumed stable magnetic flux tubes
- *Reason:* aerodynamic drag force \mathbf{f}_{drag}
 - $|{f f}_{
 m drag}| \propto v_{\perp}^2$
 - higher-order effect, vanishes in stability analysis after linearization
- 'Horizontal flux tube' model:
 - $|\mathbf{f}_{\mathrm{drag}}| \propto v_{\perp}$ (Stokes ansatz)
 - external tangential flow velocity v
 - wave mode with phase velocity $v_{\rm phs}$
 - drag instability for $v > v_{\rm phs}$

 \Rightarrow 'negative-energy waves', Ryutova M.P., 1988, Sov. Phys. JETP 67 (8)

Instability mechanism

Growth times $(M_* = 1 \text{ M}_{\odot}, T = 2 \text{ d})$

 $\log_{10} \tau$ -levels for $\tau = 10, 50, 100, 500, 10^3, 5 \cdot 10^3, 10^4, 5 \cdot 10^4$

V. Holzwarth, MPAe, Oct'02

Growth times $(M_* = 1 \,\mathrm{M}_\odot, T = 27 \,\mathrm{d})$

 $\log_{10} \tau$ -levels for $\tau = 10, 50, 100, 500, 10^3, 5 \cdot 10^3, 10^4, 5 \cdot 10^4$

V. Holzwarth, MPAe, Oct'02

Summary

• Flux tubes in giant stars:

Trapping of flux tubes in cool giants stars explains the fading of coronal X-ray emission across the 'Coronal Dividing Line'

• Flux tubes in binary stars:

Considerable non-uniformities and preferred longitudes in spot distributions due to tidal effects

• Drag instability:

General instability mechanism presumably relevant for the storage of magnetic flux tubes

