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Flux tube model

The active Sun
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Flux tube model

Flux tube model
� Storage of magnetic flux:

toroidal flux tubes in mechanical equi-

librium in the overshoot-region, paral-

lel to the equatorial plane

� Evolution:

instabilities lead to formation of rising

flux loops

� Flux eruption at solar surface and

magnetic activity

side view

top view
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Flux tube model

Mechanical equilibrium
� Assumption: Stationary flux tube with

internal flow, parallel to equatorial

plane
�� � ��

� � �� � �	


� � � � �

� non-buoyant flux ring,

curvature force balanced by Coriolis

force

curvature force

buoyancy force

Coriolis force

equator

pole
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Flux tube model

Linear stability analysis
� Eigenvalue problem:

Decomposition of displacements � � � �� � �� � �� ��� in eigenmodes

� �	 ��
 � � �
�� � ��� �� �� �

with eigenfrequency � and azimuthal wave number �

m=0 m=1 m=2 m=3 m=4 m=5

� If critical magnetic field strength � �� � � is exceeded: � � � ���  

� Unstable perturbations and formation of rising flux loops
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Flux tube model

Stability diagram

contour levels: � � � � (dashed) ��� � ��� � ��	 � ��
 � � � � � (thick) � � 
 � �� � � � 
 � � � � ��� � � �� � � ��� �

dark shading:� � � , light shading: � � �
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Flux tube model

Non-linear evolution and eruption

P. Caligari, Diss. 1995, Uni Freiburg
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Magnetic flux tubes in close binary stars

Magnetic flux tubes in binaries: WHY?
� Close binaries with cool, evolved components:

fast rotation and

deep convection zones

�

strong magnetic activity

(e.g., RS CVn and BY Dra systems)

� Observations:

– huge starspots covering � �  � of visible hemisphere

– spots at high and polar latitudes (polar caps)

– non-uniform surface coverage: spot clusters at preferred longitudes,

frequently in opposite quadrants

� Investigation of influence of tidal effects on flux tube dynamics and

surface distribution of starspots
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Magnetic flux tubes in close binary stars

Binary model
� Assumptions:

– close (detached) system with active component � � � �� � and

companion star � �� � � � � on circular orbits

– spin axes parallel, synchronized rotation

– Kepler’s law with � � � � � � � �� � �
 
 
 � 	


� � separation �� 
 
 
 � � �
– active star: ’perturbed’ single star model

companion star: point mass
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Magnetic flux tubes in close binary stars

Influence of companion star
� Tidal effects treated in lowest-order perturbation theory:

– deformation of the stellar structure � � � �� � � ��� � � �� � � � 	 �

– tidal forces, e.g., � � � � � � � ��� � � �� � � � 	 �

– � � � 	



��
�  �  �� � 
 
 
 �  � 	
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Magnetic flux tubes in close binary stars

Binary model
� Assumption: close detached system, circular orbits, synchronized

rotation; stellar masses � � � � �� � �� � and orbital periods

� � �
 
 
 
 , � separation �  
 
 
 �  � �

� Tidal effects treated in lowest-order perturbation theory

– deformation of the stellar structure:

� � � �� � � ��� � � �� � � � 	 �
– tidal forces:

e.g. � � � � � � � �� � � �� � � � 	 �

– � � � 	
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�  �  �� � 
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Magnetic flux tubes in close binary stars

Linear stability analysis
� Periodic azimuthal variation

of equilibrium quantities

along flux rings due

to stellar deformation

overshoot region
deformed

circular

direction to the

mag. flux tube

companion star

� EV problem for displacement vector � �	 � and eigenfrequency � consists

of ODE’s with periodic coefficients (Hill-type problem)

� Solutions � � � � � � � 	 � � �� �� � �	 
 , i.e., envelope varies with longitude

(cf. single star: �� ��� �� � 	
 � , i.e., constant envelope at all longitudes)
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Magnetic flux tubes in close binary stars

Eigenvalue problem
� Linearized equation of motion for small displacement � �	 ��
 � :

��� � � � � � � � �� � � � � � � � � � � � � � � � 	 � �  

with
� � 	 � � � � � � � 	 � � �
� �	 � � � � � �
� � 	 �

and � -periodic coefficient matrices

� � � � 	 � � � � � � � �	 �

� Ansatz for eigenmode � � � �� � �� � �� ��

� �	 ��
 � �

�
 � � �

�
�  �  �  � � � �� �� �
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Magnetic flux tubes in close binary stars

Coupling of wave modes
� EV problem yields 3-term recursion formula

� � � 
�

� � � � � � � 
�

�  � � � � 
�

� � � �  � ��

� Coupling of wave modes � � � � � � � � � �� �
 
 
 due to tidal effects:

k=0 k=2k=-2

k=-2 k=0 k=2
m=1

m=2

1 2-2 -1 0 3 4 5n=
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Magnetic flux tubes in close binary stars

Eigenfunctions
unstable modes stable modes

� Periodic azimuthal variation of envelope, � � � � � � � �  
 
 
 �  � ,

orientation of � � �� �� depends on equilibrium configuration

� Assumption: probability of loop formation � � �� � � � �

� ‘Preferred longitudes’ of loop formation in overshoot-region

V. Holzwarth, MPAe, Oct‘02



Magnetic flux tubes in close binary stars

Growth times
� quantitative: very small difference compared to single star results,

� � � � � � ��� � �

� qualitative: ‘instability background’ with long growth times

single star binary star

� Changes in � insignificant for erupting flux tubes
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Magnetic flux tubes in close binary stars

Resonant instabilities
� Coupling of wave modes with

wave numbers � and � � � due to

tidal interaction

� wave modes with similar frequen-

cies, � � � � �� � � � � � � �

� Resonant instabilities,

with long growth times

and large � � � � � � � �
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Magnetic flux tubes in close binary stars

Simulations
� Sampling of longitudinal dependence of flux tube dynamics:

perturbations of the initial flux ring at ��� � � � � �

at the bottom of the convection zone. . .

. . . lead to the eruption of a flux loop at ��� � � � � �

at the top of the convection zone

� modes of non-linear evolution:

single-loop tubes ( � � � ) & double-loop tubes ( � � � )
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Magnetic flux tubes in close binary stars

Localized perturbation
� in-phase superposition of wave

modes with � � �
 
 
 

� largest displacement, � � �� ,

at longitude	 �
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Magnetic flux tubes in close binary stars

Time between perturbation and eruption (in years)
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Magnetic flux tubes in close binary stars

Latitudinal distribution
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Magnetic flux tubes in close binary stars

Longitudinal distribution
� in the overshoot-region:

initial perturbation localized

around longitude	 �

� at the surface:

eruption at longitude	 �
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Magnetic flux tubes in close binary stars

Longitudinal spot clusters

Results for � � �


� single-loop tubes: insignificant

asymmetries in longitudinal spot

distribution

� double-loop tubes: considerable

non-uniform longitudinal spot distri-

butions

� orientations depend on initial field

strength and latitude

� ‘Preferred longitudes’
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Magnetic flux tubes in close binary stars

Surface distributions
� no eruptions at low latitudes (below � � �  � )

� � -periodicity of tidal effects causes spot clusters

on opposite sides of the hemisphere
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Magnetic flux tubes in close binary stars

Dependence on system period
� Strong decrease of spot clustering and tidal effects for larger system

periods / binary separations
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Magnetic flux tubes in close binary stars

Reasons
� Resonance effect:

congruency between � -periodicity of tidal effects and structure of

double-loop flux tubes

� Cumulative effect:

non-axial symmetric influence of companion star adds up during long rise

(several months) until eruption
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Magnetic flux tubes in close binary stars

Summary
� Observations: indications for preferred longitudes in spot distribution on

close binary components

� Hypothesis: preferred longitudes due to proximity effects of companion

star

� Linear analysis & simulations: preferred longitudes exist in overshoot

region and at stellar surface

� Result: small tidal effects cause considerable non-uniformities in spot

distributions

� � �
�

�
� �

�
� �  � � � � spot clusters,  � �  � apart
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Magnetic flux tubes in giant stars

Magnetic flux tubes in giants: WHY?

Observations of giants in the HR domain K0–K3 III–IV indicate

� a significant drop of coronal X-ray

emission

� the onset/increase of strong stellar

winds

� ‘Coronal Dividing Line’ (CDL)
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Magnetic flux tubes in giant stars

Interpretation of the CDL

Change of the magnetic field topology in the stellar atmosphere

closed coronal loops � ‘open’ field lines
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Magnetic flux tubes in giant stars

Simulations
� post-main-sequence evolution of stars with � � � �
 
 
 �� �

� stellar models with  
 �  � � �� � � � � � �  
 � 

� flux tube model extended to post-MS stars
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Magnetic flux tubes in giant stars

Erupting flux tubes
� � � �� �

� � � � � � � �

� �� � � � ��� � 	 �
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Magnetic flux tubes in giant stars

Trapped flux tubes
� � � �� �

� � � � � � �  �

� �� � � � �� � � 	 �
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Magnetic flux tubes in giant stars

Erupting vs. buried flux tube evolution

erupting flux tube buried flux tube
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Magnetic flux tubes in giant stars

Trapping mechanism
� Forces breakdown at the crest of the rising loop:

smaller � � � � �� � � � � larger � �� � � and smaller �� � � � at � �� 	 �

� Force ratio at � �� 	 � :

� � � � � �

� �� � �
� � �� � � � � �� � � � � � � �

� � �� � � � � � � � 	 �
� �

� rise decelerated

� Trapping of magnetic flux tubes for � � � �� � �
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Magnetic flux tubes in giant stars

Polytropic layer model
� elongated hydrostatic flux tube in

pressure equilibrium
� � � � � �

� �
� � rtop

flux tube
equilibrium

r0

flux tube
elongated

δ  = 0i
δ  > 0e

g
r

� polytropic stratification:

� � � � � � � � � � � � ��� �
and � � � � � � � � � � � � � � �� �

with � �
 ��� 
 	 
 �� � � �� 	 �
��� and � �
 � � � � �
 	 � � � � �� �� � � � � � ���


 	 �
�

� inside: � � � � � � (adiab.), outside: � � � � � � � �� (superadiab.)

� � � � is adjusted to assure conservation of mass inside the tube
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Magnetic flux tubes in giant stars

Polytropic layer model vs. simulation

� � � � � � �� � � at uppermost tube element

polytropic layer model

� ��� : radius of polytropic sphere

simulation
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Magnetic flux tubes in giant stars

Radial trajectories

� � � �� �

�� �  � � ��� � 	 
��  ,

� � � � ���� 	 ,

� ��� ��� � � � � ���
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Magnetic flux tubes in giant stars

Parameter dependence

Hardly any dependence of the trapping mechanism on

� rotation rate

� growth time / initial magnetic field strength

� magnetic flux / drag force

� initial depth of equilibrium

� detailed stellar stratification

� Trapping mechanism dominated by � � � � � � � � � � �� � � � � �

i.e. depends on evolutionary stage of the post-MS star
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Magnetic flux tubes in giant stars

Importance for the ‘Coronal Dividing Line’
� trapping of flux tubes at all latitudes for � �� � � �  
 � �
 
 
  
 � � �

( � � � � � �   
 
 
 � �   � � G7–K0, close to the left of the CDL)

� Flux tube trapping is an explanation for ‘Coronal Dividing Line’
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Magnetic flux tubes in giant stars

Summary
� Observations: decrease of coronal X-ray emission for giants cooler than

spectral type K0-K3 � � Coronal Dividing Line (CDL)

� Theory: change of coronal magnetic field structure from closed,

large-scale coronal loops to mainly open field lines

� Simulations: onset of flux tube trapping in HRD � CDL

� Result: change from closed to open field structure can be explained by the

‘buried flux tube’ model.
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Drag instability

Drag instability
� Simulations: unexpected eruptions of assumed stable magnetic flux tubes

� Reason: aerodynamic drag force � � � � 	

– � � � � � 	 �� �
�

�

– higher-order effect, vanishes in stability analysis after linearization

� ‘Horizontal flux tube’ model:

– � � � � � 	 �� � � (Stokes ansatz)

– external tangential flow velocity �
– wave mode with phase velocity �

� � �
– drag instability for � � �

� � �
phsv

v (unstable)
v (stable)

� ‘negative-energy waves’, Ryutova M.P., 1988, Sov. Phys. JETP 67 (8)
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Drag instability

Instability mechanism
� Stokes drag force:

� � � � 	 � � � � � �

� blue: damped wave mode

red: growing wave mode

av v

v

v

vi

rel,2

i

rel,1

v   = (v -v )rel e

e,2 e,1 St,1

aSt,2

n

� � �
� � �
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Drag instability

Growth times ( � � � �� � � � � �
 )

�� 	 �� � -levels for � � � � � 
 � � � � � � 
 � � � � �� ��
�� � �� � � �  ��
�� � � 
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Drag instability

Growth times ( � � � �� � � � � � �
 )

�� 	 �� � -levels for � � � � � 
 � � � � � � 
 � � � � �� ��
�� � �� � � �  ��
�� � � 
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Summary
� Flux tubes in giant stars:

Trapping of flux tubes in cool giants stars explains the

fading of coronal X-ray emission across the ‘Coronal

Dividing Line’

� Flux tubes in binary stars:

Considerable non-uniformities and preferred longitudes

in spot distributions due to tidal effects

� Drag instability:

General instability mechanism presumably relevant for

the storage of magnetic flux tubes av v

v

v

vi

rel,2

i

rel,1

v   = (v -v )rel e

e,2 e,1 St,1

aSt,2

n


