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Bulletin of exercises n◦ 6: Vorticity.

Circulation and vorticity are two quantities that measure the degree of rotation in a fluid. Circula-

tion, a scalar quantity, is an integral measure of rotation, while vorticity, a vector quantity, yields a

local measure of the degree of rotation in the neighborhood of a fluid element.

1. Kinematic identities.

In many cases it is convenient to describe the flow of a fluid in terms of the vorticity field,
ωωω = rot v. In order to obtain an equation of motion based on vorticity, it is especially useful

to make use of a number of kinematic identities involving the vorticity field.

Prove the following vector identities:
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Combining identity (iii) with the continuity equation, the so-called Beltrami identity is ob-
tained:
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2. Transport theorem for a material curve:

Let ααα = ααα(ξ, t) be the parametric expression of the material curve Ct and ξ ∈ [ξ1, ξ2] the
parameter (chosen in such a way that it labels each matter element along the curve in a unique

way. Let Q(x, t) be a vector quantity defined in the flow region and consider the line integral
∫
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Q · d ααα
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Q[ααα(ξ, t)] · ααα′(ξ, t) d ξ . (1.1)

Show that the time derivative of (1.1) is
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Q · [ (ααα′ · ∇)v ] d ξ , (1.2)

where ααα ′ is the partial derivative of ααα with respect to the parameter ξ.

This result is the one-dimensional version (i.e., for a material curve) of Reynold’s theorem.

3. Circulation of the velocity: The circulation of the velocity along the material circuit
Ct is defined as:
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∮
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v · d ααα
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where ααα = ααα(ξ, t) is the parametric expression of the curve and ξ ∈ [ξ1, ξ2] is the parameter.

Show that the time derivative of the circulation is given by
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Bulletin of exercises n◦ 6 (continuation): Vorticity.

4. Evolution equation for the kinematic helicity density.

Given a velocity field v(x, t), the kinematic helicity density is v · ωωω and the helicity of a
material region Ωt is defined as

H(Ωt) =
∫

Ωt
v · ωωω .

Consider a fluid flow in a barotropic medium (i.e., isopycnic surfaces coincide with isobaric

surfaces) under conservative long-range forces and in a situation in which the effects of vis-
cosity can be neglected.

Prove that, under these conditions, from the equations of continuity and motion the following
equation can be derived, which governs the evolution of the kinematic helicity density, viz.
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where ϕ(x, t) is a scalar funtion that must be determined.

5. Conservation of kinematic helicity.

Under the same conditions for which the theorems of Kelvin and Helmholtz hold, the kine-

matic helicity of a vortex tube is conserved.

• Let Ωt be a vortex tube. Prove that under the conditions of exercise n◦4 the kinematic

helicity of a vortex tube is a constant of motion.

• How does the result depend on the funtion ϕ (previous exercise)? Does this result hold for
any material region Ωt? Why?

• Why do we need to assume a barotropic medium in order to come to the result? Could we
state the assumption “isopycnic surfaces coinciding with isobaric surfaces” in a different way

that does not involve pressure and density?


