Max Planck Institute for Solar System Research
Prof. S. Solanki with assistants R. Cameron, J. Graham, Y. Narita, and A. Pietarila

Exercise for Solar Physics (2008) - Part 3

Chapter 5: Radiation and spectrum

5.1 Optical depth

Give a physical interpretation of optical depth.

5.2 Limb darkening

(A) What is limb darkening?
(B) The limb darkening can be approximated by $I(\theta) \sim \cos \theta$ to the first order. Here $I(\theta)$ denotes the intensity at the angle to the local vertical direction θ (for the optical depth $\tau=0$).

1. Derive the surface intensity at $\tau=0$ in the form

$$
I(0, \theta)=\int_{0}^{\infty} S(\tau) e^{-u} d u
$$

from the radiative transfer equation

$$
\cos \theta \frac{d I(\tau, \theta)}{d \tau}=I(\tau, \theta)-S(\tau)
$$

by multiplying by an integrating factor $\exp (-\tau / \cos \theta)=\exp (-u) . S(\tau)$ is called the source function.
2. Assume a linear dependence for the source function

$$
S(\tau)=a+b \tau
$$

and obtain the cosine dependence for the surface intensity

$$
I(0, \theta)=a+b \cos \theta,
$$

where a and b are constants.

Chapter 6: Convection

6.1 Onset of convection

The onset of the convection can be derived from the argument of entropy. A fluid element is convectively unstable if its entropy decreases in a certain direction (outward in the radial direction in the solar physics context), viz.,

$$
d s<0 \quad \text { (radially outward) }
$$

where the entropy is defined as

$$
s=\frac{P}{\rho^{\gamma}} .
$$

Here P and ρ denote the pressure and the mass density of the fluid element, respectively, and γ the polytropic index (the ratio of specific heat). Note that we do not give the equation of state yet.

1. Derive the condition for convection in the form

$$
\frac{d(\log P)}{d r}-\gamma \frac{d(\log \rho)}{d r}<0 \quad \text { (radially outward) }
$$

where $d r$ denotes the line element in the radial direction.
2. Derive the condition for convection, on the assumption of the equation of state for ideal gas, in the form

$$
\frac{d(\log T)}{d(\log P)}<\frac{\gamma-1}{\gamma} \quad \text { (radially outward) }
$$

where T denotes the temperature. In the solar physics the left hand side represents the temperature gradient given by radiative energy transport (∇_{rad}), and the right hand side the adiabatic gradient $\left(\nabla_{\text {ad }}\right)$. In the radially inward direction (often used in the solar physics) the condition reads as $\nabla_{\mathrm{rad}}>\nabla_{\mathrm{ad}}$.

6.2 Granulation model

Consider a mass flow $\rho \vec{v}$ that horizontally varies like $\sin k x$, and has a vertical scale height H. Show that the ratio of horizontal to vertical velocity components scales as

$$
\frac{v_{h}}{v_{r}} \simeq \frac{1}{k H} .
$$

For given H, therefore, the ratio v_{h} / v_{r} increases with increasing cell size.

Chapter 7: Atmosphere

7.1 Corona temperature

In place of the strong Calcium (Ca^{+}) H and K lines (wavelengths $\lambda \simeq 400 \mathrm{~nm}$) rather shallow and broad dips (width $\Delta \lambda \simeq 20 \mathrm{~nm}$) can be noticed in the spectrum of K corona. Assume that the dips are in fact the Doppler broadening of the line spectrum and derive a temperature of particles. Note that Thomson scattering (photon-electron scattering) is one of the major processes in the K corona. In this way Grotrian (1931) first concluded that the corona might be hot.

