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Chap.1 Introduction

(1) To other fields of science: astrophysics (stellar evolution, cosmic rays); plasma physics (dy-
namo, turbulence, waves, fusion); particle physics (atoms, molecules, neutrinos, standard model
of elementary particles); gravitation (general relativity); Sun-Earth or -planets relation (space
weather, climate).

(2) To other stars: The Sun is a main sequence star (age about 4.5× 109 yr), evolving into a red
giant, planetary nebula, and then a white dwarf.

(3) Relations to planets The Sun provides heat and light at various wavelengths (causing expan-
sion of the atmosphere through heating); The interaction with the Sun involves also the solar
wind. For magnetized planets (Earth, Jupiter, Saturn, Uranus, Neptune) the interaction with
the Sun or the solar wind causes formation of magnetosphere and various magnetospheric or
ionospheric activities such as aurora, radiation belt, storms and substorms. For non-magnetized
planets (Venus and Mars) the interaction with the Sun and the solar wind ends up with loss
(or escape) of the planetary atmosphere into space (called the ion pickup process). For non-
atmospheric planets like Mercury or Earth Moon, the solar wind hits directly on the surface and
kicks out surface materials (sputtering). The solar wind is a supersonic (and super-Alfvénic)
flow and a standing shock wave (bow shock) forms in front of the planets. Comet tails (ion tails)
are also caused by the interaction with the solar wind.

Chap.2 Core and interior

2.1 Solar model

(A) Work for shell mass dm and radius r against attraction of the rest mass m

dE = −
∫ ∞

r

Gmdm

r′2
dr′ (1)

= −Gmdm

r
(2)

Integrate over m

EG = −
∫ m�

0

Gmdm

r
(3)

= −Gm�
2

r�

∫ m�

0

r�
r

m

m�

dm

m�
(4)
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Approximate by
∫

f(x)dx '
∑

f(x)∆x,

EG ' −Gm�
2

r�
× 0.125× [0 + 1.008 + · · ·+ 1] (5)

' −6.3× 1041[J], (6)

where we used the values G = 6.67 × 10−11 [m3/kg s2], m� = 1.99 × 1030 [kg], and r� = 6.96 ×
108 m. Hence the Sun’s gravitational energy is |EG| = 6.3× 1041 [J].

The solar irradiance is S = 1.336× 103 [W/m2] at 1 AU. Noting that 1 [W] = 1 [J/s] and 1 [AU]
= 1.496 × 1011 [m], the total irradiance (integrated over the surface 4πr2) is ĖR = S × 4πr2 =
3.8 × 1026 [J/s]. This is the amount of energy that the Sun provides through radiation per
second. With the gravitational energy only, the Sun can provide energy for the period EG/ĖR =
6.3 × 1041/3.8 × 1026 [s] = 1.7 × 1015 [s] = 5.4 × 107 [yr]. In reality, the Sun’s age is about
4.5× 109 [yr]. So one needs to find an alternative energy source (which is nuclear reaction).

(B) Hydrostatic equilibrium is a force balance between pressure gradient and gravity

−∇P + ρ~g = 0 (7)

where gravity (or gravitational acceleration) is

~g = −Gm

r2
~er. (8)

In the radial direction the hydrostatic balance reads

dP

dr
= −Gmρ2

r2
(9)

Using mass-radius relation dm = 4πr2ρdr, the hydrostatic balance equation gives us the
pressure-mass relation

dP = − Gm

4πr4
dm. (10)

Multiply the both sides by sphere volume V = 4π
3 r3,

(lhs) = V dP = d(PV )− PdV (11)

(rhs) = − Gm

4πr4

4πr3

3
dm = −Gm

3r
dm. (12)

Integrate from the Sun center to the surface∫ sur

cen
(lhs) =

∫ s

c
d(PV )−

∫ s

c
PdV (13)

Note that the first term on the right hand side vanishes because P = 0 at solar surface and
V = 0 at center. Use the ideal gas pressure P = ρRT

µ = ρ2CV
3 T ,∫ s

c
(lhs) = −

∫ s

c
PdV (14)

= −2
3

∫ s

c
ρCV TdV (15)

= −2
3

∫ m�

0
CV Tdm (16)

= −2
3
U, (17)
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here the last integral gives us the internal energy U .

The right hand side of the pressure-mass relation yields one third of the gravitational energy
when integrated over m ∫ s

c
(rhs) = −

∫ s

c

Gm

3r
dm (18)

=
1
3
EG. (19)

Hence we have
U + 2EG = 0, (20)

and this is called the virial theorem.

The mass-weighted mean temperature is

〈T 〉 =
1

m�

∫ m�

0
Tdm (21)

For constant CV , the virial theorem yields

2CV

∫ m�

0
Tdm = −EG. (22)

The left hand side can also be written with the mean temperature as

2CV

∫ m�

0
Tdm = 2CV m�〈T 〉. (23)

Hence the virial theorem gives us the mean temperature as

〈T 〉 = − EG

2CV m�
(24)

= −EG

m�

µ

3R
, (25)

where CV is replaced by the gas constant R = 8.31 [J/K mol]. If we take the mean molecular
weight µ = 0.5 [g/mol], the mean temperature (estimated from the virial equilibrium) is

〈T 〉 =
|EG| × µ

m� × 3R
(26)

=
6.25× 1041 [J]× 0.5× 10−3 [kg/mol]
3× 8.31 [J/Kmol]× 1.99× 1030 [kg]

(27)

= 6.30× 106 [K]. (28)

On the other hand, the tabulated solar model gives us the mean temperature

〈T 〉tab =
∫ m�

0
T

dm

m�
' 7.83× 106 [K], (29)

which is close to the virial temperature. The Sun is therefore (roughly speaking) in a hydrostatic
and virial equilibrium.

3



2.2 Nuclear reactions

The ppI reaction releases the energy about 26.732 [MeV] from 4 protons,

4 (protons) → 1 (α−particle) + 26.732 [MeV]. (30)

In other words, the energy release is ∆Enuc = 26.732/4 [MeV] = 6.683 [MeV] = 6.683 × 106 ×
1.602×10−19 [J] = 1.071×10−12 [J] per proton. The number of protons can be simply estimated
as N = m�/mp = 1.99× 1030 [kg]/1.67× 10−27 [kg] = 1.192× 1057 [particles] on the assumption
that the Sun entirely consists of protons. The total energy release from the nuclear reaction is
Enuc = N∆Enuc = 1.3× 1045 [J]. This is about 2000 times larger than the gravitational energy.
When compared to the solar irradiance, the nuclear reaction provides the energy for the period
Enuc/ĖR = 1.3 × 1045 [J]/3.8 × 1026 [J/s] = 3.4 × 1018 [s] = 1.1 × 1011 [yr], which can account
for the energy source problem of the Sun. (cf. the Sun’s age is 4.5 × 109 [yr]) Compared to the
internal energy, Enuc/U = Enuc/(1/2EG) ∼ 4000.
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