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Chap.3 Oscillations

Part 1. Continuity equation:
∂tρ +∇ · (ρ~v) = 0. (1)

Replace the time derivative by δρ/δt, multiply the equation by δt,

δρ +∇ · (ρ~vδt) = 0. (2)

Use displacement ~ξ = δ~x = ~vδt, and we obtain Eq. (2) in the sheet:

δρ = −∇ · (ρ0
~ξ). (3)

Pressure variation is derived from the definition of the sound speed:

c2
s =

P

ρ
, (4)

where we set the polytropic index (or ratio of specific heat) γ = 1. The fluctuation of the pressure
is

δP = c2
sδρ (adiabatic), (5)

and we replace δρ → δρ + ~ξ · ∇ρ0, where the first term denotes the fluctuation (oscillation or
wave field) of density and the second term the change of the background. We also replace the
pressure as δP → δP + ~ξ · ∇P0, and here again the first term is the fluctuation of the pressure
and the second term the change of the background. The pressure variation is written in the form

δP + ~ξ · ∇P0 = c2
s(δρ + ~ξ · ∇ρ0), (6)

which gives Eq. (3) in the sheet:

δP = c2
s(δρ + ~ξ · ∇ρ0)− ~ξ · ∇P0. (7)

Incompressibility means ∇ · ~v = 0. Multiply by δt and we obtain ∇ · ~ξ = 0. The continuity
equation becomes

δρ + ~ξ · ∇ρ0 = 0. (8)

Hydrostatic equilibrium in the z (vertical) direction is

−∇P0 − ρ0g~ez = 0. (9)
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In the pressure variation equation the first term with the bracket vanishes because of the conti-
nuity equation under incompressibility δρ + ~ξ · ∇ρ0 = 0. The pressure variation is hence

δP = −~ξ · ∇P0 (10)
= ξzρg, (11)

where the ∇-part is replaced by the density fluctuation using the hydrostatic balance.

Now we use the pressure variation
δP = ξzρ0g (12)

and the density variation
δρ = −~ξ · ∇ρ0 (13)

in the momentum equation (for waves),

ρ0∂
2
t
~ξ = −∇(δP )− δρg~ez (14)

= −∇(ξzρ0(z)g) + ~ξ · ∇ρ0(z)g (15)
= −∇(ξzρ0(z)g) + ξz∂zρ0(z)g. (16)

In the z component the right hand side of the momentum equation is written as

(rhs) = −∂z(ξzρ0(z)g) + ξz∂z(ρ0(z)g) (17)
= −ρ0g∂zξz. (18)

Here we take g = const. The density ρ0 in the momentum equation is canceled out and we
obtain the momentum equation in the form

∂2
t ξz = −g∂zξz. (19)

For the x component,

(rhs) = −(∂xξz)ρ0(z)g (20)
(lhs) = ρ0(z)∂2

t ξx, (21)

hence
∂2

t ξx = −g∂xξz. (22)

Pretty.

We use the ansatz

ξz = exp[−i(ωt− kxx) + kzz] (23)
ξx = i exp[−i(ωt− kxx) + kzz]. (24)

(25)

This means that we have a plane wave propagation in the x direction with the amplitude unity
at base (z = 0). In the z direction the wave amplitude grows exponentially. The displacement
in the x direction (ξx) has a phase shift by π/2 from that of ξz, such that the oscillation of fluid
element forms a circular motion in the xz plane.
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When we use the ansatz, we obtain the dispersion relation as a solution of the equations, and
that is

ω2 = gkx = gkz. (26)

The wave propagates solely in the x direction, and the phase speed is

vph =
ωkx

|k2|
=

ω

kx
=

g

ω
. (27)

The group speed is

vgr =
ω

kx
=

g

2ω
=

1
2
vph. (28)

Part 2. Hydrostatic equilibrium is given as

−∇P0 − ρ0~g = 0. (29)

We use the ideal gas for the pressure,

P0 = n0kT = ρ0
kT

m
, (30)

where m is the mean molecular weight. Combining the two equations, we obtain

∇ρ0 = −m~g

kT
ρ0, (31)

where we assumed an isothermal gas (T = const). The gravity is in the z direction only, and

dρ0

dz
= −mg

kT
ρ0, (32)

which can easily be solved and the solution is an exponential decay of the density:

ρ0(z) = ρ0(0)e−z/H , (33)

where H is called the scale height
H =

mg

kT
. (34)

The velocity of the medium associated with the wave oscillation is

~v = iω~ξ. (35)

We use the dispersion relation
ω2 = gkx, (36)

which gives the squared velocity

|~v|2 = ω2|~ξ|2 (37)
= gkx(|ξx|2 + |ξz|2) (38)
= 2gkxe2kzz. (39)
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The kinetic energy of the oscillation is hence

1
2
ρ0v

2 =
1
2
(ρ0(0)e−z/H)(2gkxe2kzz) (40)

= ρ0(0)e(−1/H+2kz)z. (41)

If (−1/H + 2kz) > 0, the kinetic energy grows in the z direction. If (−1/H + 2kz) < 0, the
energy decays in the z direction. (See discussion in Airy wave theory in fluid dynamics.)

The wave mode is called “deep” because the scale height H is large enough for wave energy to
grow vertically, (−1/H + 2kz) > 0.

In deriving the deep ocean wave mode we assumed that the gravitational acceleration is constant,
but in reality the gravity should be a function of the radius, g = const → g = −Gm/r2. Also
we have linearized the equations, neglected all the nonlinear terms (for example the advection
term in the momentum equation). This is valid when the wave amplitude is small compared to
the background field. We also used the adiabatic change of gas (eq. of state), but in reality we
have convection which violates the adiabatic change.

The waves interact with convection motion when the wavelength is close to the convection cell
size. If the wavelength is smaller than the cell size the wave can no longer propagate, but becomes
distorted, convected, or broken by the cells.

lifetime?

Chap.4 Rotation

See winding of magnetic field (Ω-effect, on the next page). The winding develops until turbulence
or convection starts to twist the toroidal magnetic field into the poloidal field (α-effect). The
combination of these two effects makes the Sun’s magnetic field oscillatory at 11 year cycle.
Theoretically the magnetic field may grow until all the kinetic energy is converted to the magnetic
field energy (magnetic braking).
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Figure 1: Before winding of magnetic field.

radiation

core

convection

wound magnetic field
(14.6 – 11.8 = 2.8 windings)

11.8 rotations a year

14.6 rotations
         a year

Figure 2: Magnetic field one year later.
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