Small bodies of the solar system

Lecture by Klaus Jockers, Göttingen, winter term 2004/2005

- Why small bodies? Small bodies are "pristine".
- Brief outline of our present understanding of solar system formation
- Small bodies: meteors and meteorites, asteroids, planetary satellites, comets and Kuiper belt objects
- Selection of topics depends to some extent on my research interest and is not exhaustive.
- Important textbook: Imke de Pater and Jack j. Lissauer: Planetary Sciences, Cambride Univ. Press 2001

Solar system formation

-Early stages (Ewine van Dieshoek, Leiden) a-d -A lot of steps between d and e:
-Protoplanetary disk is hot near the Sun and cold far from the Sun, condensation of gas depending on temperature

- Formation and growth of planetesimals (strongly dependent on relative velocity)
- Formation of terrestrial and giant planets
- Early Jupiter prevents planetesimal growth in its neighborhood \rightarrow origin of asteroids
- Comets originate in the Kuiper belt at about 40 AU from the Sun
-Long-period comets are scattered into Oort cloud, disturbed and isotropized by the influence of passing stars and the galactic bulge.
-Short-period comets go directly from Kuiper belt to the inner solar system
-Meteorites come from the surfaces of asteroids and from Mars to the Earth. Their measurement in the laboratory has contributed greatly to our knowledge about solar system formation.

Asteroids

Orbits and their evolution
Ground-based observations

- Radiometry
- Photometric light curves
- Polarimetry of scattered light
- Radar
- Mass and density determination

Size distribution and collisional evolution
Surface composition, relation to meteorites, taxonomy
and spatial distribution of taxonomic classes
Surface structure from remote, disk-integrated observations Images of the surface of asteroids with spaceborn cameras Origin and evolution of the asteroid belt

Orbits and their evolution

Locations

projected onto the ecliptic plane of approximately 7000 asteroids on 7 March 1997. The vast majority of the asteroids depicted are in the main asteroid belt, but Trojans are shown leading and trailing the position of Jupiter; Aten, Apollo and Amor asteroids are seen in the inner solar system, crossing the orbits of Mars and Earth.

Orbital elements

```
-Time of perihelion passage T
-perihelion distance q
-excentricity e
-inclination i
- argument of perihelion }
\bulletnode }
```

Osculating elements and their epoch Periodic and secular perturbations

Figure 2. Main features of a comet moving on a typical very eccentric orbit. The symbols stand for: perihelion (P), inclination of the orbit with respect to the ecliptic plane (i), argument of perihelion (ω) and longitude of the ascending node (Ω) measured with reference to the vernal equinox (Υ). Note that in this case the comet moves on a retrograde orbit with respect to the orbital motion of the Earth. Comet Halley moves on an orbit similar to the one represented here.
TABLE 9.I Twenty Largest Asteroids ($a<6 \mathrm{AU}$).

\#	Name	Diam. (km)	Tax. Class	$\begin{aligned} & a \\ & (\mathrm{AU}) \end{aligned}$	e	(deg)	Ω (deg)	(deg)	$\begin{aligned} & M \\ & (\mathrm{deg}) \end{aligned}$	Period (yr)	Rotation (hr)
1	Ceres	933	G ?	2.769	0.0780	10.61	80.0	71.2	287.3	4.607	9.075
2	Pallas	525		2.770	0.2347	34.81	172.6	309.8	273.8	4.611	7.811
4	Vesta	510	V	2.361	0.0906	7.14	103.4	150.1	43.3	3.629	5.342
10	Hygiea	429	C	3.138	0.1201	3.84	283.0	316.1	33.0	5.656	27.659
511	Davida	337	C	3.174	0.1784	15.94	107.3	339.0	244.5	5.656	5.130
704	Interamnia	333	F	3.064	0.1475	17.30	280.4	92.2	276.8	5.364	8.727
52	Europa	312	C	3.101	0.1002	7.44	128.6	337.0	92.6	5.460	5.631
15	Eunomia	272	S	2.644	0.1849	11.76	292.9	97.5	327.9	4.299	6.083
87	Sylvia	271	PC	3.490	0.0820	10.87	73.1	273.3	248.8	6.519	5.183
3	Juno	267	S	2.668	0.0258	13.00	169.9	246.7	115.4	4.359	7.210
16	Psyche	264	M	2.923	0.1335	3.09	149.9	227.5	318.7	4.999	4.196
31	Euphrosyne	248	C	3.146	0.2290	26.34	30.7	63.1	341.0	5.581	5.531
65	Cybele	240	C	3.437	0.1044	3.55	155.4	109.8	20.1	6.372	4.041
107	Camilla	237	C	3.484	0.0842	9.93	173.5	296.0	139.7	6.503	4.840
624	Hektor	233	D	5.181	0.0246	18.23	342.1	178.0	2.9	11.794	6.921
88	Thisbe	232	C	2.767	0.1638	5.22	276.3	35.3	259.0	4.603	6.042
451	Patientia	230	C	3.062	0.0709	15.24	89.0	343.2	269.4	5.358	9.727
324	Bamberga	228	C	2.681	0.3409	11.14	327.8	43.4	189.6	4.390	29.43
48	Doris	225	C	3.110	0.0693	6.54	183.4	262.8	278.8	5.485	11.89
532	Herculina	225	S	2.771	0.1764	16.36	107.4	75.1	199.4	4.613	9.405
All data are from Yoder (1995).											

Histogram of all numbered asteroids brighter than $15^{\text {th }}$
magnitude versus orbital period (with corresponding semimajor axes shown on the upper scale); the scale of the abscissa is logarithmic.

As asteroids with shorter optical periods are better lit and pass closer to Earth, there is a strong observational bias favoring objects plotted toward the left of the plot. Note the prominent gaps in the distribution for orbital periods $1 / 4,1 / 2,3 / 7$ and $1 / 3$ that of Jupiter.

Stable
resonance
(a)

(c)

Fig. 8.1. The relative positions of Jupiter (white circle) and an asteroid (small filled circle) for the stable configuration when their orbital periods are in a ratio of $2: 1$. If T_{J} is the period of Jupiter's orbit then the diagrams illustrate the configurations at times (a) $t=0$, (b) $t=\frac{1}{4} T_{\mathrm{J}}$, (c) $t=\frac{1}{2} T_{\mathrm{J}}$, (d) $t=\frac{3}{4} T_{\mathrm{J}}$, and (e) $t=T_{\mathrm{J}}$.

Unstable
resonance

Fig. 8.2. The relative positions of Jupiter (white circle) and an asteroid (small filled circle) for the unstable configuration when their orbital periods are in a ratio of $2: 1$. If T_{J} is the period of Jupiter's orbit then the diagrams illustrate the configurations at times (a) $t=0$, (b) $t=\frac{1}{4} T_{\mathrm{J}}$, (c) $t=\frac{1}{2} T_{\mathrm{J}}$, (d) $t=\frac{3}{4} T_{\mathrm{J}}$, and (e) $t=T_{\mathrm{J}}$.

Orbits and their evolution

Main belt between 2.1 and 3.3 AU
Kirkwood gaps coincide with resonance locations relative to Jupiter, which may be unstable or stable (Hildas, Thule)
At inner edge of asteroid belt v_{6} resonance with Saturn's apse rate
~ 700 asteroids occupy L_{4} and L_{5} triangular Lagrange points \rightarrow Trojans (separated into Trojans and Greeks)
Trojans, 4/3 and 3/2 librators and main belt asteroids occupy the only known stable orbits in Solar System
Unstable orbits: Amors (1.017<q<1.3), Apollos (q < 1.017, $a>1$) and Atens ($a<1$), all small objects
Centaurs: 944 Hidalgo (a=5.8 au), 2060 Chiron (a=13.7 au, may be comet), 1994 TA ($\mathrm{a}=17.5 \mathrm{au}$), 5145 Pholus ($\mathrm{a}=13.7 \mathrm{au}$), 7066 Nessus ($\mathrm{a}=24.9 \mathrm{au}$), chaotic orbits Kuiper belt objects (see later)

The „outburst" of 2060 Chiron; a graph of the magnitude of Chiron as a function of time, which clearly shows Chiron's dramatic increase in brightness starting in 1987. The data were taken by different groups, as symbolized by the different symbols used. (Lazzaro et al. 1997)

Coordina-
tes of asteroids in a-i
space

Families
are
indicative of
collisional
proces-
ses
between
asteroids.

Asteroids, Ground-based Observations

We want to know the physical nature of asteroids.
-Remote sensing of asteroids in the visual and infrared range allows us to determine the size of the asteroids via an albedo determination.
-The albedo can also be determined from polarimetric measurements.
-Besides of this, photometric and polarimetric phase curves contain information on surface texture and regolith properties, but interpretation of these phase curves is still a matter of debate.
-Radar studies of asteroids are very interesting but at present are limited to objects which approach the Earth closely.

Radiation laws related to Planck's law
$B_{\nu}(T) d \nu=\frac{2 h \nu^{3}}{c^{2}} \frac{1}{e^{h \nu / k T}-1} d \nu \quad \mathrm{~W} \mathrm{~m}^{-2} \mathrm{rad}^{-2}$
or, using
$B_{\lambda}(T) d \lambda=B_{\nu}(T) d \lambda \cdot c / \lambda^{2}$
$B_{\lambda}(T) d \lambda=\frac{2 h c^{2}}{\lambda^{5}} \frac{1}{e^{h c / \lambda k T}-1} d \lambda \quad \mathrm{~W} \mathrm{~m}^{-2} \mathrm{rad}^{-2}$
$\frac{h \nu}{k T} \gg 1 \quad B_{\nu}(T) \approx \frac{2 h \nu^{3}}{c^{2}} e^{-h \nu / k T} d \nu \quad$ Wien
$\frac{h \nu}{k T} \ll 1 \quad B_{\nu}(T) \approx \frac{2 \nu^{2} k T}{c^{2}} \quad$ Rayleigh-Jeans
Wien's displacement law:
$\frac{c}{\nu_{\max }} \cdot \boldsymbol{T}=5.10 \cdot 10^{-3} \quad[$ meter K$] \quad$ or
$\lambda_{\max } \cdot T=2.90 \cdot 10^{-3} \quad[$ meter K$]$
With $\mathrm{T}=290 \mathrm{~K}$ (room temperature) we get $\boldsymbol{\lambda}_{\max }=10^{-5} \mathrm{~m}=10 \boldsymbol{\mu} \mathrm{~m}$. With $T=5800 \mathrm{~K}$ (solar-type star) we get $\lambda_{\max }=0.5 \mu \mathrm{~m}$.

Figure from Karttunen et al. Fundamental Astronomy, Springer 1987, p. 87

Stefan-Boltzmann law and mean temperature of a solar system body
Isotropic emission by a blackbody:
$\boldsymbol{F}_{\nu}=\int_{S} I_{\nu} \cos \theta d \boldsymbol{\omega} \quad \boldsymbol{I}$ intensity $\left[\mathrm{W} \mathrm{m}{ }^{-2} \mathrm{rad}^{-2}\right]$
$\boldsymbol{\omega}$ denotes solid angle and $\boldsymbol{\theta}$ colatitude.
If the body radiates isotropically,
$F_{\nu}=I_{\nu} \int_{S} \cos \theta d \phi \sin \theta d \theta=\pi I_{\nu}$.
Likewise, for a blackbody
$F=\pi \int_{0}^{\infty} B_{\nu}(T) d \nu=\sigma T^{4} \quad \mathrm{~W} \mathrm{~m}^{-2}$
with $\sigma=\frac{2 \pi^{5} k^{4}}{15 c^{2} h^{3}}=5.67 \cdot 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~T}^{-4}$
A solar system body is irradiated by the Sun:
$\frac{1}{4}\left(1-A_{V I S}\right) \frac{F_{\odot}}{r^{2}}=\left(1-A_{I R}\right) \sigma T^{4}$
$F_{\odot}=1.360 \cdot 10^{3} \mathrm{~W} \mathrm{~m}^{-2}$ is the solar constant at 1 au. r is the heliocentric distance in au. For a black body albedo $\boldsymbol{A}_{V I S}=\boldsymbol{A}_{I R}=$ 0. The equation assumes isotropic thermal emission (not quite true!).

Heliocentric distance [AU]					

Observations of
cometary dust in the
visual and infrared
wavelength range.
From:
Gehrz and Ney:
$0.7 \mu \mathrm{~m}$ to $23 \mu \mathrm{~m}$
photometric
observations of
P/Halley and 6
recent bright comets,
Icarus 100, 162-
186, 1992

From: Morrison and Lebovsky, Gehrels ed. Asteroids, U. Ariz. Press, 1979

Fig. 1. The observed flux of 324 Bamberga from $1.25-21 \mu \mathrm{~m}$. A solar spectrum has been fit through the K-band measurement and a least squares fit has been made to the thermal infrared measurements ($5-21 \mu \mathrm{~m}$). Solid line: dusty model. Dashed line: rocky model.

Albedos and phase function 1

$\alpha=$ Phase angle, $\theta=180^{\circ}-\alpha=$ scattering angle, $\varepsilon=($ solar $)$ elongation

Imke de Pater and Jack j. Lissauer: Planetary

Sciences, Cambride Univ. Press $2001 \downarrow$

Куликовский ПГ, Справочник любителя астрономии,
Moscow 1971 \downarrow

To Sun
\uparrow

Albedos and phase function 2

Definition of albedos (Karttunen et al, Fundamental Astronomy, Springer 1987)
Bolometric albedo \boldsymbol{A} : ratio of the total emergent flux to the total incident flux
Bond albedo \boldsymbol{A}_{ν} : ratio of the emergent flux to the incident flux for a fixed frequency
Phase function: $\Phi(\alpha)$: angular dependence of emergent radiation, $\Phi(\alpha=0)=1$.
Phase integral: $q=2 \cdot \int_{0}^{\pi} \Phi(\alpha) \sin \alpha d \alpha$.
Lambertian surface: absolutely white, diffuse surface, which reflects all radiation (i.e. $\boldsymbol{A}=1$ or $A_{\nu}=1$). It has phase function $\Phi(\alpha)=\cos \alpha$ for $0 \leq \alpha \leq \pi / 2$ and $\Phi(\alpha)=0$ for $\pi / 2<\alpha<\pi$.
Geometric albedo \boldsymbol{p} : The geometric albedo is the ratio of the flux densities at phase angle $\boldsymbol{\alpha}=\mathbf{0}$, reflected by a planet and by a Lambertian surface.
$p=A /\left(2 \int_{0}^{\pi} \Phi(\alpha) \sin \alpha d \alpha\right)=A / q$.
For isotropic emission $\Phi(\alpha) \equiv 1, q=4$ and $p=A / 4$
(note: for a sphere $4=$ surface area / cross-section area).
For a Lambertian surface $q=2 \int_{0}^{\pi / 2} \cos \alpha \sin \alpha d \alpha=1$ and $p=1$.

Albedos and phase function 3

Planetary photometry (Karttunen et al, Fundamental Astronomy, Springer 1987)

Flux from a planet: $\quad F_{p}=\frac{p}{\pi} \frac{\Phi(\alpha)}{\Delta^{2}} \frac{F_{\odot}}{r^{2}} \pi R^{2}$.
$\boldsymbol{F}_{\boldsymbol{p}}$ flux from the planet, \boldsymbol{p} geometric albedo, $\boldsymbol{\Phi}(\boldsymbol{\alpha})$ phase function, Δ geocentric distance of planet, \boldsymbol{F}_{\odot} solar flux at Earth (solar constant), \boldsymbol{R} planetary radius. All lengths are measured in astronomical units (au).
In terms of stellar magnitudes: $\quad m_{p}-m_{\odot}=-2.5 \lg \frac{F_{p}}{F_{\odot}}=-2.5 \lg \frac{p \Phi(\alpha) R^{2}}{\Delta^{2} r^{2}}$

$$
=-2.5 \lg p R^{2}+5 \lg r \Delta-2.5 \lg \Phi(\alpha)
$$

We now define the absolute magnitude: $V(1,0)=m_{\odot}+5 \lg r \Delta-2.5 \lg \Phi(\alpha)$.
$\mathrm{V}(1,0)$ is the magnitude of a body if it is at a distance of 1 au from Earth and Sun at phase angle $\alpha=0$.

Then the magnitude of a planet can be expressed as $m_{p}=V(1,0)+5 \lg r \Delta-2.5 \lg \Phi(\alpha)$.

Thermal models of asteroids

$$
\pi R^{2}\left(1-A_{V I S}\right) \frac{F_{\odot}}{r^{2}}=\beta \epsilon \sigma R^{2} \int_{0}^{2 \pi} \int_{-\pi / 2}^{\pi / 2} T^{4}(\theta, \phi) \cos \phi d \phi d \theta
$$

$\boldsymbol{\epsilon}$ is the bolometric emissivity, $\boldsymbol{\sigma}$ the Boltzmann constant, $\boldsymbol{\beta}$ is a normalization constant (of order unity related to the angular distribution of thermal emission).

An important consideration is the thermal inertia of the asteroidal surface. For low thermal inertia (like on the moon)
one can assume:

$$
T=T_{\max } \cos ^{\frac{1}{4}} \theta \cos ^{\frac{1}{4}} \phi
$$

Using this formalism one can determine the albedo $\mathrm{A}_{\mathrm{vis}}$ and from this the diameter of the asteroid. But thermal models of asteroids are also interesting by themselves as they allow to study the asteroid regolith.

(a) Brightness of
the Moon as function of solar phase angle, at three different wavelengths. The data at small phase angles (<
5°) were derived
from Clementine
data. (Buratti et al 1996) (b) Phase
function of 253
Mathilde, as
determined from
ground based
(filled circles) and
NEAR whole-disk
$0.70 \mu \mathrm{~m}$ data
(diamonds)

(Clark et al. 1998). Asteroid magnitude as a function of phase angle for 24 Themis
(c), 44 Nysa (d) and 1862 Apollo (e). Note the anomalous increase in intensity near
$\Phi=0^{\circ}$ (Bowell et al. 1989). The data are compared to best-fit Hapke models.

Remember: Phase
integral
$q=1$ for the
Lambertian
surface

TABLE 9.2 Albedos and Phase Functions for Various Airless Bodies.

Body	$A_{0, v}$	$q_{p h . v}$	A_{v}	A_{b}	Ref.
Moon	0.113	0.611	0.069	0.123	1
Mercury	0.138	0.486	0.067	0.119	1
243 Ida	0.21	0.34	0.071	0.081	2
Dactyl	0.20	0.32	0.064	0.073	2
253 Mathilde	0.047	0.280	0.013		3
433 Eros	0.29	0.39	0.11	0.12	4
951 Gaspra	0.23	0.47	0.11		5
Phobos	0.071	0.300	0.021		6
Deimos	0.068	0.390	0.027		7

1: Veverka et al. (1988). 2: Veverka et al. (1996). 3: Clark et al. (1999). 4: Domingue et al. (2001). 5: Helfenstein et al. (1994). 6: Simonelli et al. (1998). 7: Thomas et al. (1996).

The plane Sun-Object-Observer we have already dealt with is the plane of light scattering of the radiating reaching us from the Sun via the planet. It is a symmetry-breaking plane, and, because of this, makes the light from the planet polarized (from Karttunen et al., Fundamental Astronomy).

Opposition peak: shadow hiding versus coherent backscattering

a.

Coherent mechanism of backscattering: Muinonen K. Abstract of thesis, Helsinki 1990

Brightness peak at zero phase angle is accompanied by a negative branch of ("anomalous") polarization, as predicted by the model of coherent backscattering.

(b) The relationship between the slope, h (see panel (a)), and the albedo
$\mathrm{A}_{0, F=5^{\circ},}$, normalized to the case of a white magnesium oxide surface. (Dollfus et al. 1989).

Imke de Pater and Jack j. Lissauer: Planetary Sciences, Cambride Univ. Press 2001

(c) A graph of $P_{\text {Lmin }}$ versus φ_{0} for: left, lunar and terrestrial rocks (region I) and rock powders and lunar fines (region II); right , meteorites and rocks with grain sizes between 30 and $300 \mu \mathrm{~m}$ lie in between these two regions. (Dollfus et al. 1989)

Dependences of $\alpha_{i n v}$ and $P_{\text {min }}$ on average particle diameter measured in laboratory experiments. Filled circles, crosses, and open circles correspond to green, clear, and black glass, respectively (after Shkuratov et al. Earth, Moon, and Planets 1994, 65, 201-246).

YU. G. SHKURATOV ET AL.

Fig. 25. The relationship between negative polarization and opposition-effect parameters. The shaded domain contains laboratory measurements by Shkuratov et al. (1989), filled circles pertain to lunar maria, open circles to lunar highlands, crosses to lunar highland craters, pluses to lunar mare craters, and the symbols C, S, and M to the corresponding asteroid taxa.

Photometric lightcurve of the asteroid 164 Eva. The lightcurve is shown on the left. The curve can be matched by the solid profile on the right; imagine this as a two-dimensional, geometrically scattering asteroid. As this asteroid rotates, it generates a lightcurve similar to that shown on the left. (Magnusson et al., Asteroids II, Binzel et al. eds., U. of Arizona Press, pp.66-97. 1989)

Radar echo
spectrum of nearEarth asteroid 1620
Geographos
obtained in 1994 at Goldstone at a
transmitter
frequency of 8510
MHz . The echo power is plotted in standard deviations versus Doppler frequency (in Hz) relative to the estimated frequency of echoes from the asteroid's

Objects may be irregular on scales exceeding meters, yet smooth on centimeter scales.
center-of -mass.
Solid and dotted lines are echoes in the OC and SC polarizations, respectively. These spectra are at rotational phases, φ, which correspond to bandwidth extrema. (Ostro et al. 1996, Icarus 121, 44-66)

A cartoon on the geometric relationship between echo power and an asteroid's shape. The upper picture shows the convex hull H of the polar silhouette, or the asteroid shape as viewed from the pole. The middle panel shows a view along the radar line of sight, and the radar echo is shown at the bottom. The plane ψ_{0} contains the line of sight and the asteroid's spin vector. The radar echo from any part of the asteroid which intersects ψ_{0} has a Doppler frequency v_{0}. The cross-hatched strip of power in the spectrum corresponds to echoes from the cross-hatched strip on the asteroid. The asteroid's polar silhouette can be estimated from echo spectra which are adequately distributed in rotational phase. (Ostro 1989, see Imke de Pater and Jack j.
 Lissauer: Planetary Sciences)

Radar "images":
a: 4179 Toutatis
b: 1620 Geographos
c: 4769 Castalia
d: 216 Kleopatra
From Ostro et al.
1995, 1996, 2000,
Hudson and Ostro
1994, see Imke de
Pater and Jack j.
Lissauer: Planetary
Sciences, Cambride
Univ. Press 2001

Radio images of 324
Bamberga at 8510 MHz , obtained with a bistatic radar system where the Goldstone antenna was used to transmit the signal and the VLA to receive and image the radar echo. Radar echoes are shown for 13 September 1991, in the center channel (solid contours), and channels at a Doppler frequency of -381 Hz (dashed contours; redshifted) and +381 Hz (dot-dashed contours; blueshifted).
Contour levels are from
3 to 19 standard
deviations, where one standard deviation is 5.5 mJy/beam.

Imke de Pater and Jack j. Lissauer: Planetary Sciences, Cambride Univ. Press 2001

More on opposition effect:
Scattering properties of planetary regoliths near opposition:
Y. Shkuratov, G. Videen M.Kreslavsky, I. Belskaya, V. Kaydash, A. Ovcharenko,
V. Omelchenko, N. Opanasenko, E. Zubko, in:
G. Videen, Y. Yatskiv and M. Mishchenko eds.: Photopolarimetry in Remote sensing, NATO Science Series Vol. 161, Kluwer 2004, 191-208

Opposition spot, photographed from airplane over the Arizona desert.

Albedo image (left) and phase ratio image (right) of a portion of Sinus Medii on the moon

Figure 3. (a) An albedo image of a portion of Sinus Medii acquired at near zero phase angle. The brightness opposition surge cannot be distinguished from the albedo variation. (b) A phase-ratio image for the same site makes the surge clearly visible. The center of the surge (zero-phase angle point) is denoted with the black cross.

Figure 7. Albedo (a) and $\left|\mathrm{P}_{\text {min }}\right|$ (b) images of the lunar nearside [39]. Darker shades in the right panel correspond to lower values of $\left|\mathrm{P}_{\text {min }}\right|$.

Note: $\left|P_{\min }\right|$ (right side) is blacker when the phase curve of polarization is shallower, i.e. this is part of Umov's law (higher albedo means smaller polarization)

The jovian moon Europa as an example of a very high albedo icy object

Figure 10. Albedo (a) and phase-ratio $I\left(\sim 0^{\circ}\right) / I\left(3^{\circ}\right)$ (b) images of Europa's surface obtained with the Galileo camera using a $0.56 \mu \mathrm{~m}$ filter [33].

Close-ups of asteroids

Note:
Irregular shape,
cratering,
regolith

