Small bodies of the solar system

Lecture by Klaus Jockers, Göttingen, winter term 2004/2005

Comets5

Photographs of cometary nuclei

- 1P/Halley
- 19P/Borrelly
- 81P/Wild 2
- 2P/Encke (ground-based study)

The Giotto probe approaches comet Halley on March 13, 1986
"Best" image
of the nucleus
of comet
Halley as
obtained with
the Halley
Multicolor
Camera

Comet 1P/Halley:
Very famous intermediate-period comet
($\mathrm{P}=76$ years, $\mathrm{q}=0.587 \mathrm{AU}$, aphelion at about Neptune's orbit)
First images of a nucleus, taken by MPI of Aeronomy.
Because of high relative speed a very short time interval was covered. Soviet images were very poor, rotation rate and direction could not be determined unambiguously. Rotation state of nucleus complicated (tumbling)

Nucleus albedo $\approx 4 \%$.

Comet 19P/Borrelly:

- Discovered 1904 and observed in next four apparitions.
- 1936 perturbed by Jupiter into unfavorable orbit.
- 1972 again perturbed and observable again.
- Presently $P=6.9$ years, $q=1.36$ AU
- Rotation period $25 \pm 0.5 \mathrm{hr}$
- Sept. 22.49252001 visited by spacecraft Deep Space 1
- Encounter distance 2171 km, encounter speed 16.5 km s¹
- Encounter shortly after perihelion

The following description is based on the paper:
Soderblom L.A. and al. Imaging Borrelly, Icarus 167 (2004), 4-14

Fig. 1. DS1-Borrelly encounter geometry. The DS1 trajectory was nearly in the plane of the ecliptic (horizontal plane). Borrelly was imaged as rose in its inclined orbit from ecliptic south toward the spacecraft. Two images are shown in schematic position: the best image of the nucleus (CCD_NEAR_1, upper) and the best of the dust jets (CCD_MID_5_2, lower).

Two high-resolution images (173 and 63m/pixel) showing details in the near-nucleus coma and dust jet features

Conclusions about jets:
a-jet RA $=218^{\circ} \pm 2^{\circ}$ DEC $=-12^{\circ} \pm 2^{\circ}$, fixed in inertial space
β-jet RA $=237^{\circ} \pm 4^{\circ}$ DEC $=10^{\circ} \pm 4^{\circ}$.
Fan always pointing to the Sun, moving across nuclear surface and changing strength depending on where it leaves nuclear surface.

Conclusions about nucleus:

Two terrain types: slightly brighter smooth rolling planes and darker, rougher mottled terrain
that appears inactive. Craters?
Average normal albedo 0.03 ± 0.01

Stardust at comet Wild 2, Science 304, 1760-1780

Shape and size:
oblate ellipsoid in contrast to previous two comets
$1.65 \times 2.00 \times 2.75 \mathrm{~km} \pm 0.05 \mathrm{~km}$
Axis of rotation $\mathrm{RA}=110^{\circ}$ and $\mathrm{DEC}=-13^{\circ}$.
Observed phase angle range from -72° to 103°.
Albedo $=0.03 \pm 0.015$.

Surface depressions:

Craters:
Pit halo and flat floor craters (with nearly vertical crater rim, flat floors inert, i.e. no outgassing). No signs of rised rims or concentric ejecta aprons, nevertheless believed to be of impact origin.
Other depressions: < 0.5 km , noncircular, may be related to sublimation.
Mesas:
Mesas on Borrelly may be locations of outgassing, i.e. size of mesas may diminish with time. If so, Borrelly's surface is at an earlier stage of ablation evolution.

Lineaments are rare. Evidence for down-slope mass movement.
Pinnacles not anticipated landforms on small bodies. Erosional remnants?

Pit-halo crater Rahe, just to the right of centre

Stereo pair taken just before closest approach:
From top to bottom along terminator:
Craters Hemenway (with its bright spot), Mayo and Shoemaker Mesa and pinnacle in crater Shoemaker (?)

Stereo pair taken just after closest approach

Fig. 6. (A) A variety of small pinnacles and mesas seen on the limb of Wild 2. (B) The location of a $2-\mathrm{km}$ series of aligned scarps that are best seen in the stereoimages.

Fig. 7. A stereoview of the bright spot in the central region of Hemenway. A smaller spot barely detected in both images is seen just to the left of the central spot. The stereoimage also shows several remarkable upturned ridges.

The diamond is the intersection of the long-axis meridian with the equator, the circled dot is the subsolar point, and the circled cross is the subspacecraft point on the nucleus approximated by the fitted ellispoid. The ellipsoid center is marked by the X .

Comet 2P/Encke:

Short-periodic comet with the smallest known perihelion distance $q=0.33 \mathrm{AU}$ and with a period of 3.28 years.
Comet Encke does not display a tail. Instead a so-called "fan" is observed, a broad feature visible at an angle to the Sun-comet line.
Comet 2P is probably the most evolved comet.
According to Sekanina (1988, Astron. J. 95, 911-924) comet Encke's north rotation pole is located at right ascension 205° and declination 2°. Two vents on the nucleus surface were identified, one at latitude $+55^{\circ}$ (source I) and another one at latitude -75° (source II).

The comet was observed (own work) in 2003 before perihelion, when source I was active. As it turns out, the jet from the active region is visible in the light of the CN radical. The visible dust come is round with very slight extension in the direction of the fan.

Radio observations of the HCN molecule obtained simultaneously with the optical observations show a Doppler line profile consistent with ejection from the jet. Note that HCN is a possible parent molecule of the CN radical.

In order to derive a dust image in the visual wavelength range, images taken through different filters must be combined. \rightarrow

We conclude:

- The fan consists of molecules.
- The dust coma is round.
- The dust particles must be large.

Cross-sections through dust image of previous slide

Isophotes of the CN emission with the emission cone of the active region superimposed.

The outgassing from the nucleus of comet 2P/Encke is not isotropic but occurs from a limited active area.

The observed HCN line profiles can be explained by our Monte Carlo model of a ring-shaped active source, with the position of comet Encke's north pole at right ascension 205° and declination 2° (Sekanina 1988), and the ring-shaped activity at a latitude of 55° (source I of Sekanina 1988).
Instead of a ring-shaped active region an active polar cap extending from the north pole to 55° latitude could possibly also explain the observations.

The observed radio lines of HCN reveal a gas expansion velocity of the coma equal to $1.2 \mathrm{~km} \mathrm{~s}^{-1}$.

The location of the optical CN jet is consistent with pole and source position of Sekanina (1988, Astron. J. 95, 911-924)

