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Bulletin of exercises n°2: Kinematic aspects in Continuum Mechanics. Transport theorem
for a material region and for a material circuit.

1. Reynolds’ transport theorem.

Reynolds’ theorem in Continuum Mechanics is basically a re-statement of the theorem of
change of variable in a volume integral.

Let Q¢ be a “material region” (i.e., a region in 3-D space occupied at time ¢ by a portion of
continuum). We require from ¢ to be an open, connected region. (For some applications we
may also require that the boundary 0 Q¢ be a piecewise regular surface).

Let F(x,t) be a function of position and time defined for x € Q and ¢ € (¢, t5).

In Hydrodynamics/MHD one often comes across time derivatives of the form
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where not only the integrand depends on time but also the region of integration.
1.1. By using Euler’s identity (see bulletin 1) show that
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where D /Dt is the material derivative and v(x,t) is the velocity of each x € Q.

1.2. Combining Reynolds’ theorem (2.1) with the equation of continuity, prove the following
result: p D
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The above result is usually called Reynolds’ transport theorem; it is no a longer a purely
mathematical result, since use has been made of the continuity equation, which expresses
mass conservation.

2. Transport theorem for a material curve:

Let @ = a(&, t) be the parametric expression of the material contour or circuit Cy (a simple,
closed curve made up at all times of the same material elements). Let Q(x,t) be a vector
quantity defined in the flow region. The circulation of Q around the circuit C; is defined as
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where £ € (&1,&) and o/ (€, t) is the short-hand notation for the tangent vector at (§,¢). Prove
that
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