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Bulletin of exercises n◦2: Kinematic aspects in Continuum Mechanics. Transport theorem
for a material region and for a material circuit.

1. Reynolds’ transport theorem.

Reynolds’ theorem in Continuum Mechanics is basically a re-statement of the theorem of
change of variable in a volume integral.

Let Ω t be a “material region” (i.e., a region in 3-D space occupied at time t by a portion of

continuum). We require from Ω t to be an open, connected region. (For some applications we
may also require that the boundary ∂ Ω t be a piecewise regular surface).

Let F (x, t) be a function of position and time defined for x ∈ Ω t and t ∈ (t1, t2).

In Hydrodynamics/MHD one often comes across time derivatives of the form
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where not only the integrand depends on time but also the region of integration.

1.1. By using Euler’s identity (see bulletin 1) show that
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where D/D t is the material derivative and v(x, t) is the velocity of each x ∈ Ω t.

1.2. Combining Reynolds’ theorem (2.1) with the equation of continuity, prove the following
result:
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The above result is usually called Reynolds’ transport theorem; it is no a longer a purely
mathematical result, since use has been made of the continuity equation, which expresses

mass conservation.

2. Transport theorem for a material curve:

Let ααα = ααα(ξ, t) be the parametric expression of the material contour or circuit Ct (a simple,

closed curve made up at all times of the same material elements). Let Q(x, t) be a vector
quantity defined in the flow region. The circulation of Q around the circuit Ct is defined as
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where ξ ∈ (ξ1, ξ2) and ααα′(ξ, t) is the short-hand notation for the tangent vector at (ξ, t). Prove
that
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