MAGNETOHYDRODYNAMICS

Bulletin of exercises \mathbf{n}° 3: Some results in Electromagnetism.

1. Continuity equation for the electric charge.

- Starting from Maxwell's equations obtain a 'continuity equation' for magnetic charge (i.e., a differential equation expressing the conservation of magnetic charge).
- Interpret the continuity equation for the electric charge by integrating it in a fixed region \mathcal{R} with boundary $\partial \mathcal{R}$. Draw a parallelism with the continuity equation of Hydrodynamics (i.e., the differential equation expressing the conservation of mass).

2. Poynting's vector and Poynting's theorem.

If we have a continuous distribution of charges and currents, the total work per unit time (i.e., power) exerted by the electromagnetic fields on the matter in a fixed region \mathcal{R} in space is:

$$
\begin{equation*}
\mathcal{W}^{\mathrm{em}}=\int_{\mathcal{R}} \mathbf{j} \cdot \mathbf{E} \tag{1}
\end{equation*}
$$

- Starting from Maxwell's equations (Faraday's and Ampere's laws), obtain a differential equation relating this power $\mathcal{W}^{\mathrm{em}}$ with the rate of change of the total electromagnetic energy contained in \mathcal{R} and with the energy flux through the boundary $\partial \mathcal{R}$.
- Introducing the following definitions,

$$
\left\{\begin{array}{l}
\mathcal{E}_{\mathrm{em}}=\frac{\|\mathbf{B}\|^{2}}{8 \pi}+\frac{\|\mathbf{E}\|^{2}}{8 \pi} \quad \text { [electromagnetic energy density] } \tag{2}\\
\mathbf{S}=\frac{c}{4 \pi} \mathbf{E} \wedge \mathbf{B}, \quad[\text { Poynting's vector }]
\end{array}\right.
$$

write the differential equation in the form

$$
\begin{equation*}
\frac{\partial \mathcal{E}_{\mathrm{em}}}{\partial t}+\operatorname{div} \mathbf{S}=-\mathbf{j} \cdot \mathbf{E} \tag{3}
\end{equation*}
$$

- Interpret Eq. (3) [Poynting's theorem] by integrating it in a fixed region \mathcal{R} with boundary $\partial \mathcal{R}$. Draw a parallelism with the continuity equation of Hydrodynamics in the case of chemical reactions.

3. Poynting's theorem for a material region Ω_{t}.

Poynting's theorem [eq. (3)] has been derived for a fixed region \mathcal{R}. Now we extend it to the case of a material region Ω_{t} by using Reynolds' theorem.

Show that in the case of a material region Ω_{t}, the integral expression of Poynting's theorem is

$$
\begin{equation*}
\dot{E}_{\mathrm{em}}\left(\Omega_{\mathrm{t}}\right)=\frac{d}{d t} \int_{\Omega_{\mathrm{t}}} \mathcal{E}_{\mathrm{em}}=-\int_{\Omega_{\mathrm{t}}} \mathbf{j} \cdot \mathbf{E}-\oiint_{\partial \Omega_{\mathrm{t}}} \mathbf{S} \cdot \mathbf{n}+\oiint_{\partial \Omega_{\mathrm{t}}} \mathcal{E}_{\mathrm{em}} \mathbf{v} \cdot \mathbf{n} \tag{4}
\end{equation*}
$$

where $E_{\mathrm{em}}\left(\Omega_{\mathrm{t}}\right)$ is the total electromagnetic energy contained in the material region $\Omega_{\mathrm{t}}, \mathcal{E}_{\mathrm{em}}$ is the corresponding density and $\mathbf{v}(\mathbf{x}, t)$ is the velocity at each point $\mathbf{x} \in \partial \Omega_{\mathrm{t}}$ of the boundary.

