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Bulletin of exercises n◦5: Energy balance in MHD. The energy equation.

1. The kinetic energy equation:

By scalar multiplication of the momentum equation (i.e., Navier-Stokes equation including

Lorentz’ force) with the velocity field and after integrating in a material region Ω t we obtain

an integral balance equation for the kinetic energy of the plasma contained in Ω t.

Show that the time variation of the total kinetic energy contained in the material region, viz.

K̇(Ω t) , is given by
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Here σ̂̂σ̂σ is the stress tensor and D̂̂D̂D is the deformation tensor (i.e., the symmetric part of the

gradient-of-velocity tensor). Further, W def (Ω t) is the deformation power, W vol (Ω t) is the

power exerted by the long-range forces –volume forces– on the plasma inside Ω t andW sur (∂Ω t)

is the power exerted by the contact forces –surface forces– on the system through its boundary

∂Ω t.

• What is the physical meaning of the integral
∫

Ω t
v · (j ∧B)/c ?

• Show that under some restriction (which one?), the power exerted by the long-range forces on

the plasma contained in Ω t can be expressed as minus the rate of change of the gravitational

potential energy, viz. W vol (Ω t) = −V̇ (Ω t) .

• Separate in the integral W def (Ω t) =
∫

Ω t
σ̂̂σ̂σ : D̂̂D̂D the ‘net deformation power’ (i.e., the ‘useful

power’) from the power that irreversibly goes into thermal energy through viscous effects.

2. Balance for the kinetic and (electro)magnetic energy budget of a MHD-plasma.

Combining the integral expression of Poynting’s theorem for a material region Ω t [Eq. (4) in

bulletin 3] with the kinetic energy theorem derived in exercise 1 [Eq. (1) in this bulletin] we can

obtain an expression for the kinetic plus (electro)magnetic energy budget of a MHD-plasma.

• Express the source/sink term appearing in Poynting’s equation as −v · (j ∧B)/c− ‖j‖2/σe.

• Add together the balance equations for the (electro)magnetic and for the kinetic energy of the

plasma contained in Ω t.

• Discuss what we can understand as ‘dynamo’ and ‘motor’ from the resulting balance equation.



MAGNETOHYDRODYNAMICS

International Max-Planck Research School. Lindau, 9–13 October 2006 –5–

3. The so-called First Principle of Thermodynamics for a MHD-plasma.

From the integral expression of the principle of energy conservation in a MHD-plasma (without

chemical or nuclear reactions) we can obtain an integral balance equation for the internal –or

‘thermal’– energy U(Ω t) .

• Use Poynting’s theorem (for a material region) along with the theorem for the kinetic energy

to show that
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where ε(x, t) is the specific internal energy (i.e., per unit mass) and FFF (x, t) is the heat flux

density vector.

• Obtain a differential equation from the integral expression (2). This equation is the local or

differential form of the First Principle of Thermodynamics for a MHD-plasma.

4. Energy equation in the (p, T ) representation.

Starting from the First Principle of Thermodynamics in differential form, show that the en-

ergy equation for a MHD-plasma which is a Newtonian fluid can be written in terms of the

thermodynamic variables pressure and temperature in the form

ρcp
DT

D t
− αT D p

D t
= Φv + Φm − divFFF , (3)

where Φv and Φm are, respectively, the viscous and the Ohmic dissipation functions, α is the

coefficient of thermal expansion and cp is the specific heat at constant pressure.


