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Bulletin of exercises n°5: Energy balance in MHD. The energy equation.
1. The kinetic energy equation:

By scalar multiplication of the momentum equation (i.e., Navier-Stokes equation including
Lorentz’ force) with the velocity field and after integrating in a material region 2y we obtain
an integral balance equation for the kinetic energy of the plasma contained in €.

Show that the time variation of the total kinetic energy contained in the material region, viz.

K (), is given by
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Here 6 is the stress tensor and D is the deformation tensor (i.e., the symmetric part of the
gradient-of-velocity tensor). Further, W9 (Q;) is the deformation power, WY (Q;) is the
power exerted by the long-range forces —volume forces— on the plasma inside Q¢ and WS (94
is the power exerted by the contact forces —surface forces— on the system through its boundary

0.
What is the physical meaning of the integral th v-(jAB)/c?

Show that under some restriction (which one?), the power exerted by the long-range forces on
the plasma contained in €2 can be expressed as minus the rate of change of the gravitational
potential energy, viz. WY (Q¢) = —V ().

Separate in the integral W (Q) = Jo, 6 D the ‘net deformation power’ (i.e., the ‘useful
power’) from the power that irreversibly goes into thermal energy through viscous effects.

2. Balance for the kinetic and (electro)magnetic energy budget of a MHD-plasma.

Combining the integral expression of Poynting’s theorem for a material region Q¢ [Eq. (4) in
bulletin 3] with the kinetic energy theorem derived in exercise 1 [Eq. (1) in this bulletin] we can
obtain an expression for the kinetic plus (electro)magnetic energy budget of a MHD-plasma.

Express the source/sink term appearing in Poynting’s equation as —v - (j A B)/c — [|j||?/ce.

Add together the balance equations for the (electro)magnetic and for the kinetic energy of the
plasma contained in .

Discuss what we can understand as ‘dynamo’ and ‘motor’ from the resulting balance equation.
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3. The so-called First Principle of Thermodynamics for a MHD-plasma.

From the integral expression of the principle of energy conservation in a MHD-plasma (without
chemical or nuclear reactions) we can obtain an integral balance equation for the internal —or
‘thermal’— energy U(4) .

Use Poynting’s theorem (for a material region) along with the theorem for the kinetic energy

to show that p -
— pez/ 6:15—# F -n+ Al , (2)
dt Jo Q¢ ¢ Q¢ Oe

where €(x,t) is the specific internal energy (i.e., per unit mass) and F(x,t) is the heat flux

density vector.

Obtain a differential equation from the integral expression (2). This equation is the local or
differential form of the First Principle of Thermodynamics for a MHD-plasma.

4. Energy equation in the (p,T') representation.

Starting from the First Principle of Thermodynamics in differential form, show that the en-
ergy equation for a MHD-plasma which is a Newtonian fluid can be written in terms of the
thermodynamic variables pressure and temperature in the form
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where ®, and ®,, are, respectively, the viscous and the Ohmic dissipation functions, « is the

coefficient of thermal expansion and ¢, is the specific heat at constant pressure.



