MAGNETOHYDRODYNAMICS

International Max-Planck Research School. Lindau, 9–13 October 2006

Bulletin of exercises $n^{\circ}6$: Force-free magnetic fields.

If the electric currents flow along the magnetic field lines, the equation of magnetostatic equilibrium is

$$\mathbf{j} \wedge \mathbf{B} = 0\,,\tag{1}$$

in which case the Lorentz force vanishes everywhere and hydrostatic equilibrium is independent of the magnetic field.

From Eq. (1) it is immediate that the curl of **B** is everywhere parallel to the field **B** itself: rot $\mathbf{B} = \alpha \mathbf{B}$, where $\alpha(\mathbf{x})$ is a function of position.

Prove the following general properties of force-free fields:

1. Function $\alpha(\mathbf{x})$. Topological properties.

1.1. The function $\alpha(\mathbf{x})$ is constant along every magnetic field line (but differs, in general, from line to line).

1.2. The integral lines of the fields **B** and **j** lie on surfaces $\alpha(\mathbf{x}) = \text{const.}$

1.3.^{*} If a surface $\alpha(\mathbf{x}) = \text{const.}$ is closed, then it cannot be simply connected.

2. Magnetic energy: The following results are consequences of the restriction imposed on the magnetic energy by the condition that the magnetic field be force-free.

Theorem: If **B** is force-free in a region \mathcal{R} with boundary $\partial \mathcal{R}$, the total magnetic energy contained in \mathcal{R} is uniquely determined by the values taken by **B** on the boundary $\partial \mathcal{R}$.

Corollary I: It is not possible to have a force-free magnetic field inside a bounded region \mathcal{R} that identically vanishes on the boundary $\partial \mathcal{R}$.

Corollary II: It is not possible to have a force-free magnetic field inside a bounded region \mathcal{R} and such that it is entirely maintained by electric currents confined within \mathcal{R} .

3. 'Linear' force-free fields.

In general, $\alpha(\mathbf{x})$ takes different values on different lines of force. In the particular case when $\alpha(\mathbf{x})$ takes the same value everywhere, show that the magnetic field **B** satisfies Helmholtz' differential equation, viz.

$$\left(\nabla^2 + \alpha^2\right) \mathbf{B} = 0. \tag{2}$$

The exercise indicated with * is difficult and will not be discussed in the resolution of the exercises.

-6-