Coronal heating and energetics

- Global structure of the solar corona
- Coronal heating, what does it mean?
- Dissipation processes in the corona
- Observations of MHD waves in loops
- Dynamics of the magnetic network
- Flares and coronal heating

Coronal heating, what does it mean?		
Mechanical and magnetic energy:		
Generation / release	• Magnetoconvection, restructuring of fields an magnetic reconnection	
Transport/propagation	• Magnetohydrodynamic + plasma waves, shocks	
Conversion/dissipation	• Ohmic + microturbuler heating, radiative cooling resonance absorption	

Energetics of the solar corona

Parameter (erg cm ⁻² s ⁻¹)	Coronal hole (open)	Active region (closed)
Chromospheric radiation loss	4 10 ⁶	2 107
Radiation	10 ⁴	< 10 ⁶
Conduction	5 10 ⁴	$10^5 - 10^6$
Solar wind	(5-10) 10 ⁵	(< 10 ⁵)
Photosphere: 6.3 10^{10} erg cm ⁻² S ⁻¹ = 100 W m ²		

Collisional heating rates		
$\begin{array}{llllllllllllllllllllllllllllllllllll$		
Viscosity: $H_V = \eta (\Delta V / \Delta L)^2 = 2 \ 10^{-8}$		
Conduction: $H_{\rm C} = \kappa \Delta T / (\Delta L)^2 = 3 \ 10^{-7}$		
Joule: $H_{J} = j^{2}/\sigma = (c/4\pi)^{2}(\Delta B/\Delta L)^{2}/\sigma = 7 \ 10^{-7}$		
Radiative cooling: $C_R = N^2 \Lambda(T) = 10^{-1} \text{ erg cm}^{-3} \text{ s}^{-1}$		
Smaller scale, $\Delta L \approx 200$ m, required $\lambda_{Coll} \approx 1$ km		

Requirements on coronal transport				
magnetized particles, which move "freely" parallel to B .				
Coulomb collisional transport, then diffusion coefficient: $D_c = (\rho_e)^2 v_e \approx 1 \text{ m}^2 \text{s}^{-1}$ with electron Larmor radius, $\rho_e \approx 25 \text{ cm}$, and collision frequency, $v_e \approx 10 \text{ s}^{-1}$; $\rho_p \approx 10 \text{ m}$, $B \approx 1 \text{ G}$, $n_e \approx 10^8 \text{ cm}^{-3}$.				
Enhanced transport only by "anomalous" processes: Waves, turbulence, drifts, flows, stochastic fields, hyperresistivity				
Litwin & Rosner, ApJ 412 , 375, 1993	Loop switch-on time: $\tau \approx 1-10$ s. Is the current channel scale comparable to transverse loop dimension, a ≈ 1000 km? Cross diffusion time: $t_p = a^2/D \approx 10^{12}$ s.			

Coronal heating - an unsolved problem

Why?

Incomplete and insufficient diagnostics:

- Only remote-sensing through photons (X-rays, extreme ultraviolet (EUV), visible, infrared) and electromagnetic waves (radio, plasma), and corpuscular radiation (solar wind, energetic particles)
- No coronal in-situ measurements, such as possible in other solar system plasmas (Earth's magnetosphere, solar wind,......)

Coronal heating - an unsolved problem

Why?

Facing complexity and variability:

- Solar corona is non-uniform and highly structured
- Corona varies in time (magnetic activity cycle)
- Temporal and spatial changes occur on all scales
- Corona is far from thermal (collisional) equilibrium
- Coronal processes are dynamic and often nonlinear

	• Energy flux at 1 R_s : $F_E = 5 \ 10^5 \ erg \ cm^{-2}$	² S ⁻¹
	• Speed beyond 10 R_s : $V_p = (700 - 800) k_b$	m s ⁻¹
	• Proton flux at 1 AU: $n_p V_p = 2 \ 10^8 \ cm^{-2}$	S ⁻¹
	• Density at 1 AU: $n_p = 3 \text{ cm}^{-3}; n_\alpha/n_p$	= 0.04
	• Temperatures at 1 AU:	
	$T_p = 3 \ 10^5 \ K$; $T_a = 10^6 \ K$; $T_e = 1.5 \ 10^5$	к
	• Heavy ions: $T_i \cong m_i / m_p T_p; V_i - V_p$	= V _A
cł	chwenn and Marsch, 1990, 1991	

Conclusions on thermal structure

- Thermal loop structure is a possible heating diagnostic.
- But one must be careful on the interpretation of hydrostatic and LTE models.

Possible observational "solutions"

- Follow T(s) evolving in time, not just snapshots
- Spectrometer and imager working together (more in the future)
- Keep spectrometer slit at one position -> temporal variations only
- Velocity and density tracking as indicators of dynamics needed

of many smaller events

Loop oscillation properties		
Parameter	Range	
Footpoint lengt	h 10.2 - 49.4 Mm	
Footpoint widt	h 3.9 - 14.1 Mm	
Transit period	1.3 - 6.3 s	
Propagation sp	eed 65 - 205 km s ⁻¹	
Relative amplit	tude 0.7 - 14.6 %	
Damping lengt	h 2.9 - 18.9 Mm	
Energy flux	195 - 705 mW m ⁻²	
Statistical overview of the ranges of the physical properties of 38 longitudinal oscillations detected at the base of large coronal loogs (1 R = 700 km).		

and Walsh, 2002

