Coronal expansion and solar wind

- The large solar corona
- Coronal and interplanetary temperatures
- Coronal expansion and solar wind
- The heliosphere
- Origin of solar wind in magnetic network
- Multi-fluid models of the solar wind

Electron density in the corona

Guhathakurta and Sittler, 1999, Ap.J., 523, 812

Skylab coronagraph/Ulysses in-situ

The visible solar corona

Electron temperature in the corona

Solar wind stream structure and heliospheric current sheet

Solar wind fast and slow streams

Fast solar wind parameters

- Energy flux at $1 \mathbf{R}_{\mathbf{s}}$:
$F_{E}=510^{5} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{~s}^{-1}$
- Speed beyond 10 R $_{s}: \quad V_{p}=(700-800) \mathbf{k m ~ s}^{-1}$
- Proton flux at 1 AU: $n_{p} V_{p}=210^{8} \mathbf{c m}^{-2} \mathrm{~s}^{-1}$
- Density at $1 \mathrm{AU}: \quad \mathrm{n}_{\mathrm{p}}=\mathbf{3} \mathbf{c m}^{-3} ; \mathrm{n}_{\alpha} / \mathbf{n}_{\mathrm{p}}=\mathbf{0 . 0 4}$
- Temperatures at 1 AU:
$\mathrm{T}_{\mathrm{p}}=310^{5} \mathrm{~K} ; \mathrm{T}_{\alpha}=10^{6} \mathrm{~K} ; \mathrm{T}_{\mathrm{e}}=1.510^{5} \mathrm{~K}$
- Heavy ions: $\quad T_{i} \cong m_{i} / m_{p} T_{p} ; \quad V_{i}-V_{p}=V_{A}$

Model of coronal-heliospheric field

Fisk, JGR, 1996

Correlations between wind speed and corona temperature

On the source regions of the fast

 solar wind in coronal holes

Magnetic network loops and funnels

Height profiles in funnel flows

- Heating by wave sweeping
- Steep temperature gradients

- Critical point at $1 \mathbf{R}_{\mathbf{s}}$

Hackenberg, Marsch, Mann, A\&A, 360, 1139, 2000

Outflow speed in interplume region at the coronal base

O VI 1031.9 A / $1037.2 \AA$ line ratio; Doppler dimming

$T_{e}=T_{i}=0.9 M K, n_{e}=1.810^{7} \mathrm{~cm}^{-3}$

[^0]Oxygen and hydrogen thermal speeds in coronal holes

Cranmer et al., Ap.
J., 511, 481, 1998

Large anisotropy: $\quad \mathrm{T}_{\mathrm{O} \perp} / \mathrm{T}_{\mathrm{O}| |} \geq 10$

Fast solar wind speed profile

Solar wind in Carrington longitude

Heliosphere and local interstellar medium

(red) $-0.3>\log \left(\mathrm{n}_{\mathrm{e}} / \mathrm{cm}^{3}\right)>-3.7$ (blue)
Kausch, 1998

Boundaries of coronal holes

Sun's loss of angular momentum carried by the solar wind II

Changing corona and solar wind

Sun's loss of angular momentum carried by the solar wind I

Induction equation:
$\nabla \times(\mathbf{V} \times \mathbf{B})=0 \quad-->\quad r\left(V_{r} B_{\phi}-B_{r} V_{\phi}\right)=-r_{0} B_{0} \Omega_{0} r_{0}$

Momentum equation:
$\rho \mathbf{V} \cdot \nabla V_{\phi}=1 / 4 \pi \mathbf{B} \cdot \nabla B_{\phi}-->\quad r\left(\rho V_{r} V_{\phi}-B_{r} B_{\phi}\right)=0$
$L=\Omega_{0} r_{A}{ }^{2} \quad$ (specific angular momentum)

$$
V_{\phi}=\Omega_{0} r\left(M_{A}^{2}\left(r_{A} / r\right)^{2}-1\right) /\left(M_{A}^{2}-1\right) \quad M_{A}=V_{r}(4 \pi \rho)^{1 / 2} / B_{r}
$$

Weber \& Davis, ApJ, 148, 217, 1967
Helios: $r_{A}=10-20 R_{s}$

New solar wind data from Ulysses

Speed profile of balloon-type CMEs

Srivastava et al., 1999
Wide range of initial acceleration: 5-25 ms

Non-stationary slow solar wind

Corona of the active sun

Solar wind models I

Assume heat flux, $Q_{e}=-\rho \kappa \nabla T_{e}$, is free of divergence and thermal equilibrium: $T=T_{p}=T_{e}$. Heat conduction: $\kappa=\kappa_{0} T^{5 / 2}$ and $\kappa_{o}=810^{8}$ $\mathrm{erg} /(\mathrm{cm} \mathrm{s} \mathrm{K})$; with $\mathrm{T}(\infty)=0$ and $\mathrm{T}(0)=10^{6} \mathrm{~K}$ and for spherical symmetry:

$$
4 \pi \mathbf{r}^{2} \kappa(\mathbf{T}) \mathbf{d T} / \mathbf{d r}=\text { const } \quad-->\quad \mathrm{T}=\mathrm{T}_{0}(\mathrm{R} / \mathrm{r})^{2 / 7}
$$

Density: $\rho=n_{p} m_{p}+n_{e} m_{e}$ quasi-neutrality: $n=n_{p}=n_{e}$, thermal pressure: $p=n_{p} k_{B} T_{p}+n_{e} k_{B} T_{e}$, then with hydrostatic equilibrium and $p(0)=p_{0}$:

$$
\mathrm{dp} / \mathrm{dr}=-\mathbf{G M m} \mathrm{p}^{n} / \mathrm{r}^{2}
$$

$$
p=p_{0} \exp \left[\left(7 G M m_{p}\right) /\left(5 k_{B} T_{0} R\right)\left((R / r)^{5 / 7}-1\right)\right]
$$

Problem: $\mathrm{p}(\infty)>0$, therefore corona must expand!

Solar wind models II

Density: $\rho=n_{p} m_{p}+n_{e} m_{e}$, quasi-neutrality: $n=n_{p}=n_{e}$, ideal-gas
thermal pressure: $p=n_{p} k_{B} T_{p}+n_{e} k_{B} T_{e}$, thermal equilibrium: $T=T_{p}=T_{e}$, then with hydrodynamic equilibrium:
$\mathbf{m n}_{\mathbf{p}} \mathbf{V d V} / \mathbf{d r}=\mathbf{- d p} / \mathbf{d r}-\mathbf{G M m} \mathbf{p}_{\mathbf{n}} / \mathbf{r}^{\mathbf{2}}$
Mass continuity equation:

$$
\mathrm{mn}_{\mathrm{p}} \mathbf{V} \mathbf{r}^{2}=\mathbf{J}
$$

Assume an isothermal corona, with sound speed $c_{0}=\left(k_{B} T_{0} / m_{p}\right)^{1 / 2}$, then one has to integrate the DE:

$$
\left[\left(V / c_{0}\right)^{2}-1\right] d V / V=2\left(1-r_{c} / r\right) d r / r
$$

With the critical radius, $\mathrm{r}_{\mathrm{c}}=\mathrm{GMm} / \mathrm{P} /\left(2 \mathrm{k}_{\mathrm{B}} \mathrm{T}_{0}\right)=\left(\mathrm{V}_{\mathrm{o}} / 2 \mathrm{c}_{0}\right)^{2}$, and the escape speed, $\mathrm{V}_{\infty}=618 \mathrm{~km} / \mathrm{s}$, from the Sun's surface.

Fluid equations

- Mass flux:

$$
F_{M}=\rho V A \quad \rho=n_{p} m_{p}+n_{i} m_{i}
$$

- Magnetic flux:

$$
F_{B}=\mathbf{B A}
$$

- Total momentum equation:
$V d / d r V=-1 / \rho d / d r\left(p+p_{w}\right)-G M_{s} / r^{2}+a_{w}$
- Thermal pressure: $\quad p=n_{p} k_{B} T_{p}+n_{e} k_{B} T_{e}+n_{i} k_{B} T_{i}$
- MHD wave pressure: $p_{w}=(\delta B)^{2} /(8 \pi)$
- Kinetic wave acceleration: $\mathbf{a}_{\mathbf{w}}=\left(\rho_{p} \mathbf{a}_{\mathbf{p}}+\rho_{\mathrm{i}} \mathbf{a}_{\mathrm{i}}\right) / \rho$
- Stream/flux-tube cross section: A(r)

Proton and electron temperatures

Electrons are cool!

Protons are hot!

Marsch, 1991

slow wind
\downarrow fast wind
fast wind \downarrow
slow wind

Solar wind models III

Introduce the sonic Mach number as, $\mathrm{M}_{\mathrm{s}}=\mathrm{V} / \mathrm{c}_{0}$, then the integral of the $D E$ (C is an integration constant) reads:
$\left(M_{s}\right)^{2}-\ln \left(M_{s}\right)^{2}=4\left(\ln \left(r / r_{c}\right)+r_{c} / r\right)+C$
For large distances, $M_{s} \gg 1$; and $V \sim(\ln r)^{1 / 2}$, and $n \sim r^{2} / V$, reflecting spherical symmetry.

Only the „wind" solution IV, with $\mathrm{C}=-3$, goes through the critical point r_{c} and yields: $\mathrm{n}->0$ and thus $p->0$ for $r \rightarrow \infty$. This is Parker's famous solution: the solar wind.

Parker, 1958
V, solar breeze; III accretion flow

Energy equations

Parallel
thermal
energy

$$
\frac{d}{d r} v_{\| j}^{2}=-2 v_{\| j}^{2}\left(\frac{1}{u_{j}} \frac{d u_{j}}{d r}\right)+\frac{2 q_{\| j}}{u_{j}}+\left(\mathbf{Q}_{\| \mathbf{j}}+\mathbf{S}_{\| \mathbf{j}}\right) / \mathbf{u}_{\mathbf{j}}
$$

w-p terms + sources + sinks
Perpendicular
thermal
energy
$\frac{d}{d r} v_{\perp j}^{2}=-v_{\perp j}^{2}\left(\frac{1}{A} \frac{d A}{d r}\right)+\frac{q_{\perp j}}{u_{j}}+\left(\mathrm{Q}_{\perp \mathrm{j}}+\mathrm{S}_{\perp \mathrm{j}}\right) / \mathrm{u}_{\mathrm{j}}$

Heating functions: $q_{\perp, \|} \ldots$?
Wave energy absorption/emission by wave-particle interactions !

Conduction/collisional exchange of heat + radiative losses

Heating and acceleration of ions by cyclotron and Landau resonance
$\left(\begin{array}{lll}\frac{\partial}{\partial t} U_{j \|} \\ \frac{\partial}{\partial t} V_{j \|}^{2} \\ \frac{\partial}{\partial t} V_{j \perp}^{2}\end{array}\right)=2 \mathrm{a}_{\mathrm{j}} \quad$ acceleration $\quad=\begin{aligned} & \text { parallel heating } \\ & =2 \perp\end{aligned}$
$=\frac{1}{(2 \pi)^{3}} \int_{-\infty}^{+\infty} d^{3} k \sum_{M} \hat{\mathcal{B}}_{M}(\mathbf{k})\left(\frac{\Omega_{j}}{k}\right)^{2} \frac{1}{1-\left|\hat{\mathbf{k}} \cdot e_{M}(\mathbf{k})\right|^{2}}$
$\times \sum_{s=-\infty}^{+\infty} \mathcal{R}_{j}(\mathbf{k}, s)\left(\begin{array}{c}k_{\|} \\ 2 k_{\|} w_{j}(\mathbf{k}, s) \\ s \Omega_{j}\end{array}\right)$
Wave spectrum ? Wave dispersion ? Resonance function ?

Model of the fast solar wind

Anisotropic two-fluid model of the fast solar wind

$\mathrm{T} / \mathbf{1 0}^{\mathbf{5}} \mathrm{K}$

- Anisotropic heat deposition in 1-D two-fluid model
- Alfvén wave pressure gradient
$\mathrm{v} / \mathrm{km} \mathrm{s}^{-1}$

Hu et al., JGR,
102, 14661, 1997

- Anisotropy weakly influences dynamics
- Anisotropy needed for perpendicular ioncyclotron heating and thermodynamics

Coronal base:
$\delta v \approx \mathbf{1 0 - 2 0 ~} \mathbf{k m ~ s}^{-1}$
$\xi \approx 20-30 \mathrm{~km} \mathrm{~s}^{-1}$

Two-dimensional two-fluid MHD model of the solar corona

- Time-dependent

2-D model MHD with separate T_{e} and T_{p} equations

- Slow outflow at equator, fast over poles after 1 day
- Heating functions Q_{e} and Q_{p} latitudedependent

Suess et al., JGR, 104, 4697, 1999

Four-fluid model for turbulence driven heating of coronal ions

Solar Orbiter's novel orbital design

[^0]: Patsourakos and Vial, A\&A, 359, L1, 2000

