The microstate of the solar wind

- Radial gradients of kinetic temperatures
- Velocity distribution functions
- Ion composition and suprathermal electrons
- · Coulomb collisions in the solar wind
- Waves and plasma microinstabilities
- Diffusion and wave-particle interactions
- Kinetic models of the solar wind

Changing corona and solar wind

Velocity distribution functions

Statistical description: $f_i(\mathbf{x}, \mathbf{v}, t) d^3x d^3v$,

gives the probability to find a particle of species j with a velocity \mathbf{v} at location \mathbf{x} at time t in the 6-dimensional phase space.

Local thermodynamic equilibrium:

$$f_j^{M}(\mathbf{x}, \mathbf{v}, t) = n_j (2\pi v_j)^{-3/2} \exp[-(\mathbf{v} - \mathbf{U}_j)^2 / v_j^2],$$

with number density, $n_{j'}$ thermal speed, $v_{j'}$ and bulk velocity, $\boldsymbol{U}_{j'}$ of species j.

Dynamics in phase space: Vlasov/Boltzmann kinetic equation

Kinetic processes in the solar corona and solar wind I

- Plasma is multi-component and nonuniform
- \rightarrow complexity
- Plasma is dilute
- \rightarrow deviations from local thermal equilibrium
- → suprathermal particles (electron strahl)
- \rightarrow global boundaries are reflected locally

Problem: Thermodynamics of the plasma, which is far from equilibrium.....

Coulomb collisions				
	Parameter	Chromo -sphere	Corona (1R _s)	Solar wind (1AU)
	n _e (cm ⁻³)	10 ¹⁰	10 ⁷	10
	T _e (K)	10 ³	1-2 10 ⁶	10 ⁵
	λ (km)	10	1000	10 ⁷
Since	N < 1, Coulom	b collisions	require kine	tic treatment

- \bullet Yet, only a few collisions (N \geq 1) remove extreme anisotropies!
- \bullet Slow wind: N > 5 about 10%, N > 1 about 30-40% of the time.

Kinetic processes in the solar corona and solar wind II

- Plasma is multi-component and nonuniform
- \rightarrow multi-fluid or kinetic physics is required
- Plasma is dilute and turbulent
- → free energy for micro-instabilities
- \rightarrow resonant wave-particle interactions
- → collisions by Fokker-Planck operator

Problem: Transport properties of the plasma, which involves multiple scales.....

Heavy ion heating proportional to charge/mass by cyclotron resonance

Observations and semi-kinetic models of solar corona and wind • Coronal imaging and spectroscopy indicate strong deviations of the plasma from thermal equilibrium • Semi-kinetic particle models with with self-consistent wave spectra provide valuable physical insights • Such models describe some essential features of the observations of the solar corona and solar wind • But the thermodynamics of the solar corona and solar wind requires a fully-kinetic approach • Turbulence transport as well as cascading and dissipation in the kinetic domain are not understood