Waves, structures and turbulences

- Fluctuations: scales and parameters
- Magnetohydrodynamic waves
- Structures and Alfvénic fluctuations
- Turbulence spectra and evolution
- Plasma waves and dispersion
- Shocks and discontinuities

Length scale	s in the	e solar wind				
Macrostructure - fluid scales						
• Heliocentric distance:	r	150 Gm (1AU)				
• Solar radius:	R _s	696000 km (215 R _s)				
• Alfvén waves:	λ	30 - 100 Mm				
Microstructure - kinetic scales						
• Coulomb free path:	1	~ 0.1 - 10 AU				
 Ion inertial length: 	V_A/Ω_p (c/a	o _p) ~ 100 km				
• Ion gyroradius:	rL	~ 50 km				
• Debye length:	λ _D	~ 10 m				
• Helios spacecraft:	d	~ 3 m				
Microscales v	ary with so	olar distance!				

Spatial and temporal scales					
Phenomenon	Frequency (s ⁻¹)	Period (day)	Speed (km/s)		
Solar rotation:	4.6 10 ⁻⁷	25	2		
Solar wind expansio	on: 5 - 2 10 ⁻⁶	2 - 6	800 - 250		
Alfvén waves:	3 10-4	1/24	50 (1AU)		
Ion-cyclotron waves	s: 1 - 0.1	1 (s)	(V _A) 50		
Turbulent cascad	le: genei	ation +	transport		
\rightarrow inertial rang	$e \rightarrow kinetic$	range + o	lissipation		

Kolmogorov phenomenology for isotropic homogeneous turbulence

Energy	cascade:		
Turbulen is transp decreasi	t energy (per unit mass de orted by a hierarchy of tur ng sizes to the dissipation	ensity), $\mathbf{e}_{t} \approx (\delta \mathbf{Z})^{2}$, bulent eddies of e range at scale \mathbf{l}_{D} .	at scale t ver
	energy transfer rate:	ε , ~ (δ Ζ,) ²/τ	
	turnover time:	$\tau \sim l / \delta Z_l$	
	wavenumber:	k ~ 1/l	
	energy spectrum:	$e_k k \sim (\delta Z_t)^2$	
	$\varepsilon_l \sim \delta Z/l (\delta Z)^2$	$\sim e_k^{3/2} k^{5/2}$	
e invar	iance: s. = s. (dise	sination rate)	> e~k-5/2

Turbulence in the heliosphere

Questions and problems:

- Nature and origin of the fluctuations
- Distribution and spectral transfer of turbulent energy
- Spatial evolution with heliocentric distance
- Microphysics of dissipation

 $\begin{array}{l} \mbox{Alfvénic correlations: Alfvénicity (cross helicity)} \\ \sigma_c = (e^+ \cdot e^{\cdot})/(e^+ + e^{\cdot}) = 2 < \delta V \cdot \delta V_A > / < (\delta V)^2 + (\delta V_A)^2 > \\ \mbox{Magnetic versus kinetic energy: Alfvén ratio} \\ r_A = e_V/e_B = < (\delta V)^2 > / < (\delta V_A)^2 > \\ \end{array}$

Scaling, non-linear couplings and cascading?

MHD turbulence dissipation through absorption of dispersive kinetic waves

• Viscous and Ohmic dissipation in collisionless plasma (coronal holes and fast solar wind) is hardly important

• Waves become dispersive (at high frequencies beyond MHD) in the multi-fluid or kinetic regime

 Turbulence dissipation involves absorption (or emission by instability) of kinetic plasma waves!

• Cascading and spectral transfer of wave and turbulence energy is not well understood in the dispersive dissipation domain!

