Origins of Solar Systems

Lecture held for the International Max Planck Research School "Solar System and beyond" February 13-15, 2006

by Klaus Jockers (jockers@mps.mpg.de)

including student lectures by Clementina Sasso Lotfi Yelles Chaouche Ingo von Borstel Stefan Schröder Esa Vilenius Emre Isik Silvia Protopapa Elias Roussos

Origin of solar systems: Organization

Lecture (KJ):

Introduction and overview Dense molecular clouds, photodissociation regions and protostars

Protoplanetary disks Equilibrium condensation of a solar nebula

Meteorites and the early solar system

Origin of giant planets

Comets and the early solar system

Student talks:

Origin of the elements and Standard Abundance Distribution

Agglomeration of planetesimals and protoplanets

Isotope chronology of meteorites and oxygen isotopes

Extrasolar planets

Transneptunian Objects

Schedule:

Monday und Tuesday: 9:30-12:15 (3*45 Min plus 2*15 Min break) 14:00-16:45 Wednesday: 9:30-12:15

Wednesday afternoon: Seminar and Colloquium

Solar system formation Early stages (Ewine van Dieshoek, Leiden) a-d •A lot of steps between d and e: •Protoplanetary disk is hot near the Sun and cold far from the Sun, condensation of gas depending on temperature · Formation and growth of planetesimals (strongly 1 pr 10 000 AU dependent on relative velocity) • Formation of terrestrial and giant planets • Early Jupiter prevents planetesimal growth in its neighborhood \rightarrow origin of asteroids Comets originate in the Kuiper belt at about 40 AU from the Sun •Long-period comets are scattered into Oort cloud, disturbed and isotropized by the influence of 100 AU 1 - 10 4-10 ⁵year -1 t - 10 6-10 7 year passing stars and the galactic bulge. •Short-period comets go directly from Kuiper belt to H,O, CH,OH, the inner solar system H2CO, HCN, . •Meteorites come from the surfaces of asteroids and d from Mars to the Earth. Their measurement in the laboratory has contributed greatly to our knowledge 50 AU about solar system formation. 1>107 yes

Excurse on blackbody radiation. Radiation laws related to Planck's law $B_{\nu}(T)d\nu = \frac{2h\nu^{3}}{c^{2}} \frac{1}{e^{h\nu/kT} - 1} d\nu \quad \text{W m}^{-2} \text{ rad}^{-2}$ or, using $B_{\lambda}(T)d\lambda = B_{\nu}(T)d\lambda \cdot c/\lambda^{2}$ $B_{\lambda}(T)d\lambda = \frac{2hc^{2}}{\lambda^{5}} \frac{1}{e^{hc/\lambda kT} - 1} d\lambda \quad \text{W m}^{-2} \text{ rad}^{-2}$ $\frac{h\nu}{kT} \gg 1 \qquad B_{\nu}(T) \approx \frac{2h\nu^{3}}{c^{2}} e^{-h\nu/kT} d\nu \quad \text{Wien}$ $\frac{h\nu}{kT} \ll 1 \qquad B_{\nu}(T) \approx \frac{2\nu^{2}kT}{c^{2}} \quad \text{Rayleigh-Jeans}$ Wien's displacement law: $\frac{c}{\nu_{max}} \cdot T = 5.10 \cdot 10^{-3} \quad [\text{meter K}] \quad \text{or}$ $\lambda_{max} \cdot T = 2.90 \cdot 10^{-3} \quad [\text{meter K}]$ With T = 290 K (room temperature) we get $\lambda_{max} = 10^{-5} \text{ m} = 10 \,\mu\text{m}$. With T = 5800 K (solar-type star) we get $\lambda_{max} = 0.5 \,\mu\text{m}$.

Diffe	Different phases of the interstellar medium							
Dillo	ient price							
	Physical Characteristics of Molecular Regions in the Interstellar Medium ^a							
	Density (cm ⁻³)	Т (К)	Mass M _O	A _V (mag)	Size (pc)	ΔV (km s ⁻¹)	Examples	
Diffuse Clouds	100 - 800	30 - 80	1 - 100	≲1	1-5	0.5 - 3	ζ Oph	
Translucent Clouds	500 - 5000	15 - 50	3 - 100	1 – 5	0.5 - 5	0.5 – 3	HD 169454; High-latitude clouds	
Cold, Dark Clouds								
complex	$10^2 - 10^3$	≳ 10	$10^3 - 10^4$	1 - 2	6 - 20	1 – 3	Taurus-Auriga	
clouds	$10^2 - 10^4$	≳ 10	$10 - 10^3$	2 - 5	0.2 - 4	0.5 - 1.5	B1, B5	
cores/clumps	$10^4 - 10^5$	≈ 10	0.3 - 10	5 - 25	0.05 - 0.4	0.2 - 0.4	TMC-1, B335	
Giant Molecular Clouds								
complex	100 - 300	15 - 20	$10^{5}-3 \times 10^{6}$	1 - 2	20 - 80	6 - 15	M 17, Orion	
clouds	$10^2 - 10^4$	$\gtrsim 20$	$10^3 - 10^5$	$\gtrsim 2$	3 - 20	3 - 12	Orion OMC-1, W3 A	
warm clumps	$10^4 - 10^7$	25 - 70	$1 - 10^{3}$	5 - 1000	0.05 - 3	1 - 3	M 17 clumps, Orion 1/5 S	
hot cores	$10^7 - 10^9$	100 - 200	$10 - 10^3$	50 - 1000	0.05 - 1	1 - 10	Orion hot core	
^a Table adapted from Golds	mith (1987), Tu	mer (1989a) ar	d Friberg and Hja	Imarson (1990).				

Van Dishoek E.F. et al., in Levy and Lunine eds. "Protostars and Planets III", U. of Az. Press, 1993, pp 163-241.

Van Dishoek E.F. et al., in Levy and Lunine eds. "Protostars and Planets III", U. of Az. Press, 1993.

TABLE I Angular Sizes of Protostellar Objects and Capabilities of Telescopes Linear size Angular Size Telescope^b Angular Resolution Taurus Orion M17 Galactic Center 115 230 345 810 140 pc 450 pc 2.2 kpc 8.5 kpc GHz GHz GHz GHz 5 AU 0."04 0."01 45 m (Nobeyama) 15 Inner solar nebula 100 AU 0″7 0."2 0."05 30 m (IRAM) _ 22" 12" 7" Outer solar nebula 1000 AU 7″ 2″ 0.5 0"1 15 m (JCMT/SEST) 44' 20″ 15″ 6″ Presolar nebula 0.05 pc Cloud core 5″ 74″ 23" 1″ 10 m (CSO) 30 20' 9' 0.5 pc 12' 4′ 50″ 12″ Interferometer (OVRO/ 4-7" 1–2″ Cloud BIMA/Nobeyama/IRAM ^a The table only lists the capabilities of currently operating telescopes, not those of future projects. ^b IRAM = Institute de Radio Astronomie Millimetrique; ICMT = James Clerk Maxwell Telescope; CSO = Caltech Submillimeter Observatory; SEST = Swedish-ESO Submillimeter Telescope; OVRO = Owens Valley Radio Observatory; BIMA = Berkeley-Illinois-Maryland Array.

The Taurus molecular cloud in CO emission.

Note the large extent of the cloud and the many small objects embedded in it.

The map has been done in the light of the CO molecule (millimeter wavelength).

CO is a very important interstellar molecule and believed to be a tracer of the (unobservable) H₂ molecule.

Figure 1. Velocity integrated intensity of CO emission in the Taurus molecular cloud complex. The lowest contour is 0.5 K km s^{-1} , and the separation between contours is 1.5 K km s^{-1} . The border of the surveyed region is indicated by the outer solid line. Various clouds such as B5 and cloud cores such as TMC-1 discussed in the text are indicated (figure adapted from Ungerechts and Thaddeus 1987).

Туре	Process	Rate Coefficien
	Formation Processes	
Radiative association	$X + Y \rightarrow XY + h\nu$	$10^{-16} - 10^{-9}$
Grain surface formation	$X + Y: g \rightarrow XY + g$	$\sim 10^{-18}$
	Destruction Processes	
Photodissociation	$XY + h\nu \rightarrow X + Y$	$\sim 10^{-10} - 10^{-8}$ s
Dissociative recombination	$XY^+ + e \rightarrow X + Y$	$\sim 10^{-6}$
Collisional dissociation	$XY + M \rightarrow X + Y + M$	
	Chemical Processes	,
Ion-molecule exchange	$X^+ + YZ \rightarrow XY^+ + Z$	$\sim 10^{-9}$
Charge-transfer	$X^+ + YZ \rightarrow X + YZ^+$	$\sim 10^{-9}$
Neutral-neutral	$X + YZ \rightarrow XY + Z$	$\sim 10^{-12}$
^a Approximate rate coefficients ficients are sensitive to tempe the unattenuated interstellar r	s appropriate for cold dark clc rature. For photodissociation adiation field are listed.	ouds. All rate coef-, the rates in s^{-1} in

Build-up of complex molecules in dense molecular clouds:

• In dense molecular clouds the only available energy to activate molecules comes from cosmic rays

- Cosmic rays penetrate into molecular clouds up to column densities of 10²⁴ cm⁻².
- Cosmic rays ionize He and H_2 at rates 10⁻¹⁷ to 10⁻¹⁶ s⁻¹.
- H_3^+ is formed: $H_2^+ + H_2^+ \rightarrow H_3^+ + H$ or $H_2^- + He^+ \rightarrow H_3^+ + H + He$.

 $\rm H_3^+$ is an interesting "floppy" ring molecule. It has transitions in the L and K bands. It was first discovered on Jupiter, and in the 90th was finally discovered in the interstellar medium.

H₃⁺ is the key to molecule formation in dark clouds.

Van Dishoek E.F. et al.,	in Levy and Lunine eds.	"Protostars and	Planets III"
U. of Az. Press. 1993.			

TABLE III Identified Interstellar and Circumstellar Molecules ^a					
Species	Name	Species	Name	Species	Name
H ₂	molecular hydrogen	C ₂ H ₂	acetylene	C ₆ H	
C ₂	diatomic carbon	C ₃ H	propynylidyne $(l \text{ and } c)$	CH ₂ CHCN	vinyl cyanide
CH	methylidyne	H ₂ CO	formaldehyde	CH ₃ C ₂ H	methylacetylene
CH ⁺	methylidyne ion	NH ₃	ammonia	CH ₃ CHO	acetaldehyde
CN	cyanogen	HNCO	isocyanic acid	CH ₃ NH ₂	methylamine
CO	carbon monoxide	HOCO ⁺	protonated carbon dioxide	HC ₅ N	cvanodiacetylene
CS	carbon monosulfide	HCNH ⁺	protonated hydrogen cyanide	.,	.,
OH	hydroxyl	HNCS	isothiocyanic acid		
HCI	hydrogen chloride	C ₃ N	cvanoethynyl	HCOOCH ₂	methyl formate
NO	nitric oxide	C ₁ O	tricarbon monoxide	CH ₂ C ₂ N	methylcyanoacetylene
NS	nitrogen sulfide	H ₂ CS	thioformaldehvde	CH ₂ C ₄ H	methyldiacetylene
SiC	silicon carbide*	H ₃ O ⁺	hydronium ion	CH ₃ CH ₃ O	dimethyl ether
SiO	silicon monoxide	C ₃ S	2	CH ₃ CH ₂ CN	ethyl cyanide
SiS	silicon sulfide	HC ₂ N	•	CH ₂ CH ₂ OH	ethanol
SO	sulfur monoxide	-		HC ₇ N	cyanobexatrivne
PN					ejjalonenalijne
CP	* 1	C₄H	butadivnyl		
so+	sulfoxide ion	C ₃ H ₂	cvclopropenvlidene	CH ₂ C ₄ CN	
NaCl	sodium chloride*	H ₂ CCC	propadienvlidene	CH ₂ CH ₂ CO	acetone
AlCl	aluminum chloride*	HCOOH	formic acid	engengee	averene
KCI	potassium chloride*	CH ₂ CO	ketene		
AIF	aluminum fluoride*†	HC ₃ N	cvanoacetylene	HC ₀ N	cvano-octa-tetra-vne
NH .	nitrogen hydride	CH ₂ CN	cyanomethyl		eyano com-totta-ync

		. N	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
SiN	•	NH ₂ CN	cyanamide		
		CH ₂ NH	methanimine	HC ₁₁ N	cyano-deca-penta-yr
H_2D^+	†			CH4	methane
C ₂ H	ethynyl			SiH ₄	silane*
CH ₂	methylene [†]			C ₄ Si	· •
HCN	hydrogen cyanide			C₅	pentatomic carbon*
HNC	hydrogen isocyanide	C₅H	pentynylidyne	HCCNC	isocyanoacetylene
HCO	formyl	C_2H_4	ethylene*		
HCO ⁺	formyl ion	H ₂ CCCC	butatrienylidene		
HOC ⁺	isoformyl ion [†]	CH ₃ OH	methanol		
N ₂ H ⁺	protonated nitrogen	CH ₃ CN	methyl cyanide		
HNO	nitroxyl	CH ₃ NC	methyl isocyanide		
H ₂ O	water	CH ₃ SH	methyl mercaptan		
HCS ⁺	thioformyl ion	NH ₂ CHO	formamide		
H ₂ S	hydrogen sulfide	HC ₃ HO	propynal		
OCS	carbonyl sulfide				
SO ₂	sulfur dioxide				
SiC ₂	silicon dicarbide*				
C_2O	dicarbon monoxide				
C3	triatomic carbon*				
C ₂ S					

Interstellar chemistry: Photodissociation regions

UV radiation of mass-rich, early-type stars evaporates grains and dissociates molecules.

The "elephant trunks" hide condensations of newly forming stars. These clouds are denser and therefore resist the evaporation and dissociation longer.

Cloud collapse:

Force balance: pressure and centrifugal force versus gravitation.

Virial theorem: Multiply the equation of motion with the radius vector. "Virial" = torque = Drehmoment see J. Lequeux "The interstellar medium", Springer 2003, Chap. 14.

In the absence of external pressure $E_{Grav} = -2E_{Kin}$

Jeans mass M_J : $M_J \approx \left(\frac{kT}{G\mu_a m_{amu}}\right)^{3/2} \frac{1}{\sqrt{\rho}}.$

The less dense the object is the more massive it must be to collapse. Examples: galaxies, star clusters, stars, planets. The cooler the object the easier it collapses. $n > 10^{-11}$ g cm⁻³ and T=10K needed to form a Jupiter size planet. This density is much larger than that observed in interstellar clouds .

Gravitational collapse may be triggered by supernova explosion or a galactic density wave.

Collapse of molecular cloud cores and star formation

Free fall time scale:

 $t_{ff} = \left(\frac{3\pi}{32G\rho}\right)^{1/2}$

For the Sun it is about 30 minutes.

Clumps are densest near their centers, collapse is inside-out. Angular momentum conversation leads to spin-up of the cloud, may cause the collapse to stop and to fragment the cloud. Therefore most often multiple stellar systems form.

Virtually all single stars and many multiple stars are surrounded by a flat disk during formation. The mass collects in the central star and the angular momentum in the disk.

In solar system 99.8% of the mass is in the central star and 98% of the angular momentum is in planetary orbits.

Temperature and density rise during collapse. Cloud becomes opaque, pressure builds up, D is burnt into He. When D is exhausted, star shrinks and heats further up, ¹H fusion starts.

Early phases of star formation can be observed in the microwave range, which presently is a very active part of research. Later the star becomes visible in the IR wavelength range.

Rotating protostellar disk DM Tau, obserded in millimeter range and presented here as three-dimensional spectrum. The system is well fitted by Keplerian rotation V~r^{-0.5±0.1} Radius 525AU, Mass = 0.6-0.85 M_p Mundy et al., in Mannings, et al. eds. "Protostars and Planets IV", U.of Az. Press, 2000, 355-376.

Figure 6. Images of the CO J = 2-1 emission, model, and residuals for the DM Tauri system from Guilloteau and Dutrey (1998). The upper set of panels shows the observed emission, with each panel labeled with velocity. The middle panels display the emission from the best-fitted model. The lower panels display the differences between the observations and the model. The angular resolution of the observations is $3.5 \times 2.4''$.

Lower panel not shown

Orion Nebula

Note that HII region is *in front* of dark cloud!

see e.g. : Henbest N., Marten M., The New Astronomy, Cambridge 1983

Credit: Mark McCaughrean (Astrophysikalisches Institut Potsdam), Hans Zinnecker (Astrophysikalisches Institut Potsdam), and John Rayner (University of Hawaii)

Early evolution of a collapsing star (continued):

A star of 15 solar masses condenses to the main sequence in 60000 years, for a star with 0.1 solar masses the process takes hundreds of millions of years.

Very young stars (T Tauri stars) difficult to observe as they are enshrouded into dense clouds.

T Tauri stars have high Lithium content (central temperature not yet high enough to destroy Lithium).

Bonnor-Ebert-Sphere:

Equilibrium isothermal sphere of finite size with a fixed temperature and boundary pressure; such a configuration might be relevant to star formation if prestellar cloud cores when formed are nearly in equilibrium and in approximate pressure balance with a surrounding medium. For a fixed sound speed *c* and boundary pressure *P*, an isothermal sphere is unstable to collapse if its radius and mass exceed the critical values

$$R_{\rm BE} = \frac{0.48 \, c^2}{G^{1/2} P^{1/2}}, \ M_{\rm BE} = \frac{1.18 \, c^4}{G^{3/2} P^{1/2}}$$

(Bonnor-Ebert sphere).

These results can be related to the Jeans length and mass discussed above by noting that in an isothermal medium the pressure and density are related by $P = \rho c^2$ (*c* is sound speed);

thus, $R_{\rm BE}$ and $M_{\rm BE}$ have the same dimensional form as the Jeans length and mass, but with smaller numerical coefficients that reflect the fact that a Bonnor–Ebert sphere contains only matter whose density is higher than the background density, while a region one Jeans length across also includes matter of lower density that may or may not collapse along with the denser material.

(R.B. Larson, The physics of star formation, Rep. Prog. Phys. 66, 1651-1697, 2003)

