Origin of solar systems: Organization

Lecture (KJ):

Introduction and overview Dense molecular clouds, photodissociation regions and protostars

Protoplanetary disks Equilibrium condensation of a solar nebula

Meteorites and the early solar system

Origin of giant planets

Comets and the early solar system

Student talks:

Origin of the elements and Standard Abundance Distribution

Agglomeration of planetesimals and protoplanets

Isotope chronology of meteorites and oxygen isotopes

Extrasolar planets

Transneptunian Objects

"Best" image of the nucleus of comet Halley as obtained with the Halley Multicolor Camera

Crovisier J., Solids and volatiles in comets: From cometary nuclei to cometary atmospheres, in Greenberg, Li eds., Formation and evolution of solids in space, Kluwer, 1999, 389-426. TABLE 1. A selection of famous comets. Comets are listed by order of perihelion date for non-periodic or long-period comets, and by order of periodic comet number for short-period comets. For comets that appeared before 1995, the old-style provisional and definitive numberings are also given.

Comet			perihelion	q
			date	[AU]
C/1882 R1 Great Comet	1882 II	1882b	17 Sep. 1882	0.00775
C/1965 S1 Ikeva-Seki	1965 VIII	1965f	21 Oct. 1965	0.00779
C/1969 Y1 Bennett	1970 II	1969i	20 Mar. 1970	0.538
C/1973 E1 Kohoutek	1973 XII	1973f	28 Dec. 1973	0.142
C/1975 V1 West	1976 VI	1975n	25 Feb. 1976	0.197
C/1980 E1 Bowell	1982 I	1980b	12 Mar. 1982	3.364
C/1983 H1 IRAS-Araki-Alcock	1983 VII	1983d	21 May 1983	0.991
C/1986 P1 Wilson	1987 VII	1986l	20 Apr. 1987	1.200
C/1989 X1 Austin	1990 V	1989c1	10 Apr. 1990	0.350
C/1990 K1 Levy	1990 XX	1990c	24 Oct. 1990	0.939
C/1996 B2 Hyakutake			1 May 1996	0.230
C/1995 O1 Hale-Bopp			1 Apr. 1997	0.914
D/1993 F2 Shoemaker-Levy 9		1993e		
1P/Halley	1986 III	1982i	9 Feb. 1986	0.587
2P/Encke			23 May. 1997	0.331
21P/Giacobini-Zinner	1985 XIII	1984e	5 Sep. 1985	1.028
22P/Kopff			2 Jul. 1996	1.585
23P/Brorsen-Metcalf	1989 X	19890	11 Sep. 1989	0.479
29P/Schwassmann-Wachmann 1				5.772
46P/Wirtanen			14 Mar. 1997	1.083
73P/Schwassmann-Wachmann 3			22 Sep. 1995	0.936
95P/Chiron			14 Feb. 1996	8.454
109P/Swift-Tuttle	1992 XXVIII	1992t	12 Dec. 1992	0.958

Cometary dynamics

J.A. Fernández, in "Encyclopedia of the solar system", Paul R. Weissman, Lucy-Ann MsFadden, Torrence V. Johnson (eds.), Academic Press 1999, pp. 537-556.

Statistics of cometary orbits Dynamical evolution of long-period comets The Oort cloud The Jupiter family The trans-Neptunian belt (abbreviated) Dynamical aspects of cometary origin

Observations

Distribution of the original semimajor axes of observed long-period comets with $(1/a)_{orig} < 5 \times 10^{-3} \text{ AU}^{-1}$.

The spike with approximate width of

 $0 < (1/a)_{orig} < 10^{-4}$ AU⁻¹ is smaller than the typical energy change by planetary disturbances, Oort argued that the comets in the spike enter the inner solar system

for the first time, and therefore called these comets new. This finding let Oort to conclude that a huge swarm of 10^{11} comets surrounds the solar system at distances of 10^{4} - 10^{5} AU. This structure, called the Oort cloud, is the source of the long-period comets.

Not all "new" comets are new in the strict sense, as some of them will have been in the planetary region before.

Injection of new comets

The quasi-steady supply of new comets from the Oort cloud is due to the action of distant passing stars (typically at distances larger than \sim 5 x 10⁴ AU) and galactic tides.

This mechanism should provide comets with a uniform distribution of perihelia q. But perturbations by the giant planets remove comets to different degrees.

FIGURE 7 Computed distribution of perihelion distances of hypothetical "new" comets injected into the planetary region, obtained from Monte Carlo studies that included both planetary and stellar perturbations. [From J. A. Fernández (1982). Astron. J. 87, 1318. Used with permission.]

The Jupiter family comets

JF comets are moving on quite unstable orbits.

A large fraction of distant JF comets with perihelion $q \ge 2$ AU has still to be discovered.

JF comets could be the end products of the dynamical evolution of LP comets. But then we would expect rectograde JF comets. A more likely source for them is the trans-neptunian belt.

The Tisserand invariant of the restricted three-body problem is another useful criterion to clarify the origin of the JF comets. $1 \sqrt{a}$

$$T = \frac{1}{a} + 2\sqrt{2q\left(1 - \frac{q}{2a}\right)\cos a}$$

3 regions of the Oort cloud:

1. Inner core a < 3000-4000 AU, concentrated toward ecliptic, if comets formed in the protoplanetary disk. Its mass should then be constrained to a few 0.1 MEarth. The mass should be considerably larger (up to several 100 MEarth, if comets formed in situ.

2. A spherical, stable Oort cloud 4000 < a < 30000 AU, containing comets stable over periods comparable or larger than the age of the solar system (4.6 x 109 yr).

3. An outer Oort cloud, for a>30000 AU, whose population has dynamical lifetimes shorter than the solar system age; it therefore needs to be continuously replenished with comets from the inner regions of the Oort cloud.

Year	$\operatorname{comet}/\operatorname{technique}$	molecules
1973	C/1973 E1 (Koho	utek)
	radio	HCN?
1976	C/1975 V1 (West)
	uv	Ć CO
1983	C/1983 H1 (IRAS	-Araki-Alcock)
	radio	NH ₃ ?
	UV	S ₂
1985-86	1P/Halley	
	radio	HCN, H ₂ CO?
	IR	H_2O, CO_2
1990	C/1989 X1 (Austi	n), C/1990 K1 (Levv)
	radio	H_2CO, H_2S, CH_3OH
1996	C/1996 B2 (Hvak	utake)
	radio	NH ₃ , HDO, HNC, CH ₃ CN, OCS? HNCO?
	IR	CH_4, C_2H_2, C_2H_6
1997	C/1995 O1 (Hale-	Bopp)
	radio	OCS, HNCO, HC ₃ N, SO ₂ , HCOOH. H ₂ CS
		NH ₂ CHO, HCOOCH ₃

metary nuclei to	molecule	abundance	method (b)	Nb (c)	comments
metary atmo-spheres		(4)	(0)	(0)	
	H ₂ O	=100.	IR	6	also indirect (from OH, O, H)
Greenberg, Li eas.,	HDO	0.05	radio	2	
rmation and evolution	00	2-20.	UV, radio, IR	> 5	extended source?
	CO2	2-6.	IR ,	2	
solids in space,	H ₂ CO	0.05-4.	radio	> 5	extended source
Wor 1000 380 426	CH ₃ OH	1-7.	radio, IR	> 5	
uwer, 1999, 309-420.	HCOOH	~ 0.1	radio	1	
	HNCO	0.07	radio	2	
	NH ₂ CHO	~ 0.1	radio	1	
	HCOOCH ₃	0.05	radio	1	
	CH_4	0.7	IR	2	
	C_2H_2	0.3-0.9	IR	2	
	C_2H_6	0.4	IR	2	
	NH_3	0.5	radio	3	also indirect (from NH, NH ₂)
	HCN	0.1 - 0.2	radio, IR	> 5	
	HNC	0.01	radio	2	
	CH ₃ CN	0.01	radio	2	
	HC_3N	0.01	radio	1	
	H_2S	0.3	radio	> 5	
	H_2CS	0.01	radio	1	
	CS	0.1	UV, radio	> 5	from CS ₂ ?
	OCS	0.3	radio	2	
	SO	~ 0.5	radio	1	from SO ₂ ?
	SO_2	~ 0.1	radio	1	
	S ₂	0.0050.2	UV	2	

v c c ir F o TABLE 9. Comparison of the abundances of ices in the interstellar medium (towards IRS9) and of cometary volatiles (at ~ 1 AU). Cometary abundances are from Table 7. ISM ice abundances are taken from a compilation of [97] from various sources as well as from recent *ISO* results [45, 105].

species	interstel	lar ices	cometary volatiles		
H ₂ O	=100		=100		
CO	10-40		2-20		
CH₃OH	5		1–7		
CO_2	10		2–6		
H ₂ CO	2–6	tentative	0.05-4		
НСООН	3	tentative	~ 0.1		
CH₄	1-2		0.7		
other hydrocarbons	??		~ 1	$\mathrm{C_2H_2},\mathrm{C_2H_6}$	
NH ₃	< 10		0.5		
O ₃	≤ 2		??		
XCN	< 0.5 - 2		0.2	nitriles + HNCO	
OCS. XCS	0.2		0.4	OCS + CS	
SO ₂	??		~ 0.1		
H ₂	>~ 1		??		
N ₂	??		??		
	??		??		

The similarity of composition of comets and dense interstellar clouds suggests that possibly comets contain unaltered interstellar material.

But the at least in the outer solar system the environment may be quite similar so the similarity may come from the fact that the chemical processes are similar.

Fegley B. jr. and Prinn R.G.: "Solar nebular chemistry: Implications for volatiles in the solar system" in

Hal A. Weaver, Laura Danly (eds.) "The formation and evolution of solar systems", Cambridge Univ. Press 1989, pp. 171 - 211

Dust composition measurements in comet 81P/Wild 2 with CIDA (Cometary and Interstellar Dust Analyzer)

In contrast to measurements in comet 2P/Halley negative ions were measured as well.

Because of the low encounter speed of 6 kms⁻¹ organic compounds are much better preserved than they were in comet 1P/Halley. But in 81P not the whole particle is destroyed and the ions come from the outer layers of the particle.

The 29 spectra obtained during the flyby of Comet 81P/Wild 2 confirm the predominance of organic matter. In moving from interstellar to cometary dust, the organic material seems to lose most of its hydrogen and oxygen as water and carbon monoxide. These are now present in the comet as gas phases, whereas the dust is rich in nitrogen-containing species. No traces of amino acids were found.

Kissel et al., The cometary and interstellar dust analyzer at comet 81P/Wild 2, 2004, Science 304, 1774-1776.

CIDA positive ion spectrum measured in the coma of comet 81P/Wild 2

1. Three spectra like Fig. 1 \rightarrow CH⁺ + traces of N⁺, NH⁺, O⁺, OH⁺ N-heterocyclic fragment ions, C₃NH_x⁺ (x=2, 4, 6, 8). no complex O-containing species

2. Na⁺, K⁺ (contaminants of Ar target), $C_6NH_4^+$ (H2- loss from $C_6NH_6^+$), abundance of heterocyclic, probably annealed rings as backbones of most of the organic structure

Fig. 1. A positive-ion spectrum, converted from time of flight into a linear mass scale. The amplitude scale is logarithmic. The spectrum is typical for nitrogen organic chemistry. The m/z = 107, 109 doublet is due to the Ag⁺ from the target.

Negative ion spectra from comet 81P Wild 2 (Fig. 2) and from 3 interstellar particles (Fig. 3)

Fig. 2. A negative-ion spectrum, converted like Fig. 1. The dominating ion is CN⁻, as is typical for nitrogen organic chemistry. The oxygen region (m/z = 16, 17) is surprisingly low; however, the SH⁻ (m/z = 33, 35) is high. The shift of the H⁻ line is a known instrumental effect.

Fig. 3. Three negative-ion spectra, converted like Fig. 2, are shown for comparison with Fig. 2. The spectra are from three interstellar dust particles. The carbon-oxygen region is dominant, and the major peak in the mass range from 20 to 30 daltons is clearly 25, not 26.

Crovisier, in Greenberg and Li	measured and in the objects (fin abundance	sured in come in the whole co ects (from [5]). ndance of Fe fo	
(eds.) Formation and Evolution of Solids in	element	Ikeya-S	
	н		
p. 389.	Li	t	
	С		
Note N deficiency in	N		
	0		
comets.	Na	t	
	Mg	(=100.	

TABLE 8. The elemental composition of comets. Average elemental abundances measured in comet C/1965 S1 (lkeya-Seki) (from [7]), in Halley's dust grains and in the whole comet dust and volatiles (from [67]), and in other solar system objects (from [51]). The abundances are normalized to Mg (to the solar system abundance of Fe for Ikeya-Seki, in which Mg was not observed).

element	Ikeya-Seki ^{a)}	P/	Halley	Solar system	CI-chondrite
		dust	dust + ice		
н		2 025.	4 062.	2.6×10^{6}	492.
Li	t			0.0053	0.0053
С		814.	1 010.	0.	70.5
Ν		42.	95.	291.	5.6
0		890.	2 040.	2 216.	712.
Na	t	10.	10.	5.3	5.3
Mg	(=100.0)	=100.0	=100.0	=100.0	=100.0
Al		6.8	6.8	7.9	7.9
Si		185.	185.	93.	93.
Р				1.0	1.0
s		72.	72.	48.	48.
к	t	0.2	0.2	0.35	0.35
Ca		6.3	6.3	5.7	5.7
Ti	< 0.02	0.4	0.4	0.22	0.22
v	0.01			0.027	0.027
Cr	0.08	0.9	0.9	1.3	1.3
Mn	0.5	0.5	0.5	0.89	0.89
Fe	84.	52.	52.	84.	84.
Co	0.4	0.3	0.3	0.21	0.21
Ni	7.2	4.1	4.1	4.6	4.6
Cu	0.2			0.049	0.049
.) In addition	i, abundances i	elative to < 2.5 ×	Na were dete 10 ⁻⁵ for Li [rmined to be 1. 90].	6×10^{-3} for K and

Isotopes		comet	method	cosmic	comet value	ref.
D/H	H ₃ O ⁺	1P/Halley	mass	1.5×10^{-5}	$3.08 \pm 0.53 \times 10^{-4}$ 3.02 \pm 0.22 \times 10^{-4}	[8] [48]
	OH HDO	1P/Halley C/1990 K1 C/1996 B2 C/1995 O1	UV radio radio radio		$< 5 \times 10^{-4} < 7 \times 10^{-3} 2.9 \pm 1.0 \times 10^{-4} 3.3 \pm 0.8 \times 10^{-4}$	[94] [35] [12] [113
¹⁸ O/ ¹⁶ O	${\rm H_3O^+}$	1P/Halley	mass	2.0×10^{-3}	$\begin{array}{c} 1.93 \pm 0.12 \times 10^{-3} \\ 2.13 \pm 0.18 \times 10^{-3} \end{array}$	[8] [48]
¹³ C/ ¹² C	CN HCN	1P/Halley C/1996 B2 C/1995 O1 C/1995 O1	visible radio radio radio	1.1×10^{-2}	$\begin{array}{c} 1.05 \pm 0.13 \times 10^{-2} \\ 2.9 \pm 1.0 \times 10^{-2} \\ 1.11 \pm 0.18 \times 10^{-2} \\ 0.90 \pm 0.09 \times 10^{-2} \end{array}$	[71] [77] [78] [80]
¹⁵ N/ ¹⁴ N	CN HCN	1P/Halley C/1995 O1	visible radio	3.6×10^{-3}	$< 3.6 \times 10^{-3}$ $3.1 \pm 0.4 \times 10^{-3}$	[71] [80]
$^{34}S/^{32}S$	CS	1P/Halley C/1995 O1	mass radio	4.2×10^{-2}	$\begin{array}{l} 4.5 \pm 1.0 \times 10^{-2} \\ 3.7 \pm 0.4 \times 10^{-2} \end{array}$	[74] [80]

Crovisier J., in Greenberg, Li eds., Formation and evolution of solids in space, Kluwer, 1999, 389-426.

the protosolar nebula. They are found unprocessed in LL3 meteorites like Semarkona and Bishunpur. Otherwise they were mixed into a protosolar cloud with $D/H = 2.5 \ 10^{-5}$ with mixing ratio depending on heliocentric distance.

Questions to students:

- Was the topic of the lecture interesting?
- · What kind of other topics you would find interesting?
- Was the level of the lecture ok?
- What about the presentation? Should the lecturer think in front of his audience? What about the powerpoint format? Long texts on the viewgraphs? Suggestions for improvements?
- What about the block format of this lecture? Suggestions for improvements?
 What about the student lectures?
- Opinion of the lecturers? Did you learn something? Would you like to do it again?
- Opinion of the audience?