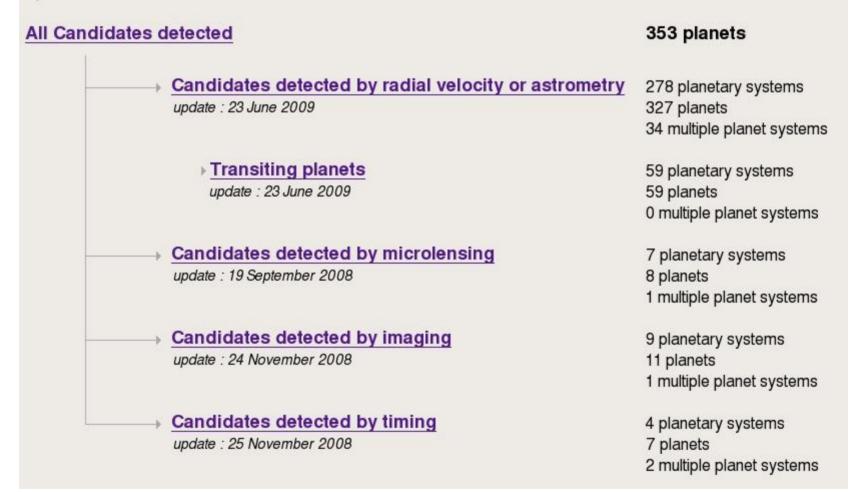
Dynamical and physical properties of extrasolar planets

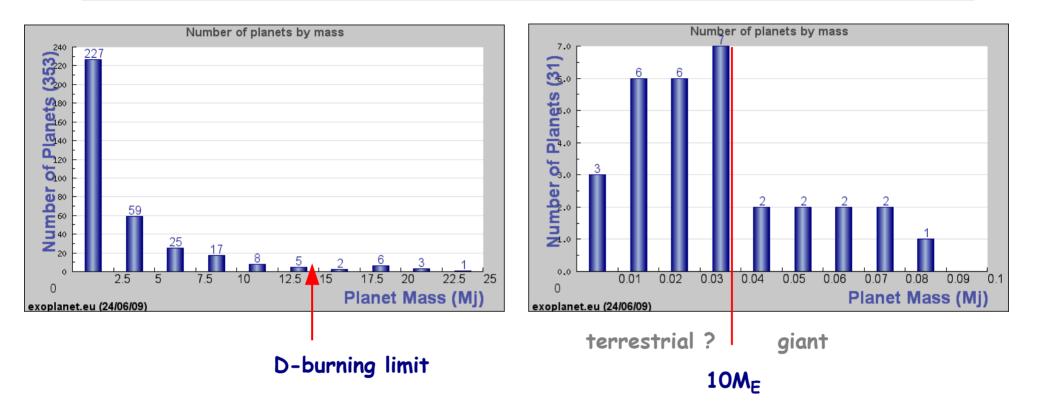

- Part 1 (Anne):
 - Introduction, Detection methods
- Part 2 (Ronny):
 - Physical properties, Statistics
- Part 3 (Anne):
 - Dynamical properties, Atmospheres
- Part 4 (Ronny):
 - Habitability of exoplanets

- Part 1 (Anne):
 - Introduction, Detection methods
- Part 2 (Ronny):
 - Physical properties, Statistics
- Part 3 (Anne):
 - Dynamical properties, Atmospheres
- Part 4 (Ronny):
 - Habitability of exoplanets

- Part 1 (Anne):
 - Introduction, Detection methods
- Part 2 (Ronny):
 - Physical properties, Statistics
- Part 3 (Anne):
 - Dynamical properties, Atmospheres
- Part 4 (Ronny):
 - Habitability of exoplanets

All Catalogs

update : 23 June 2009

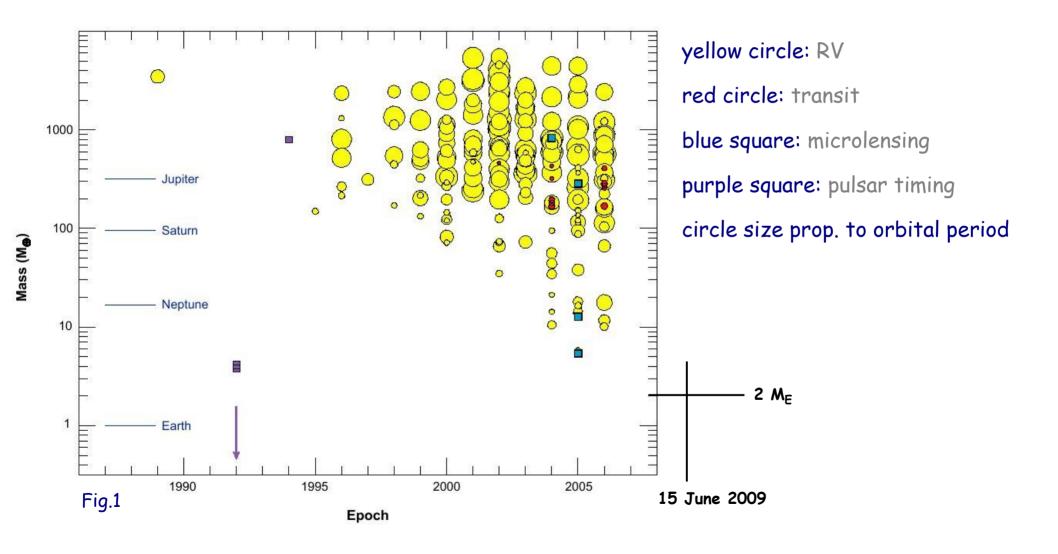


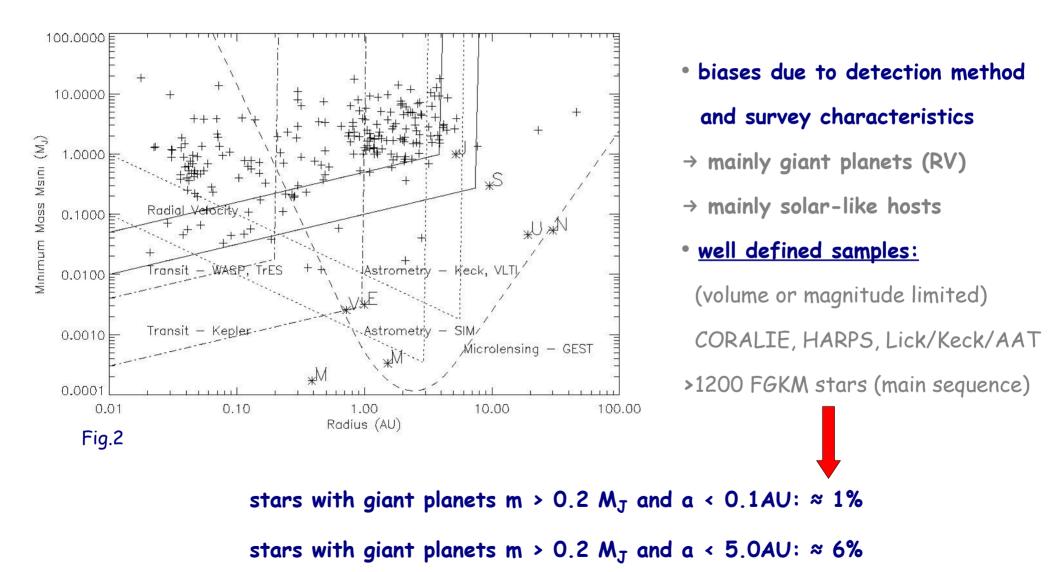
exoplanet.eu

some "exo"-world records...

- lowest mass → PSR 1257+12b: 0.02M_E (pulsar host); Gl 581e: 2M_E (M-dwarf host)
- highest mass \rightarrow HD 43848b: 25M_J = 8065M_E (G-dwarf host)
- shortest period → CoRoT-7b: 0.85d (KO-dwarf host)
- longest period → Fomalhaut b: 320000d (A3-dwarf host)
- closest to us → eps Eridani b: 3.2pc (K2-dwarf host)
- lightest host star → 2M1207: M8-dwarf with 0.025M_s
- most massive host star \rightarrow HD 13189: K2-giant with 4.5±2.5M_S
- most planets in a system \rightarrow 55 Cnc with five planets (G8-dwarf host)

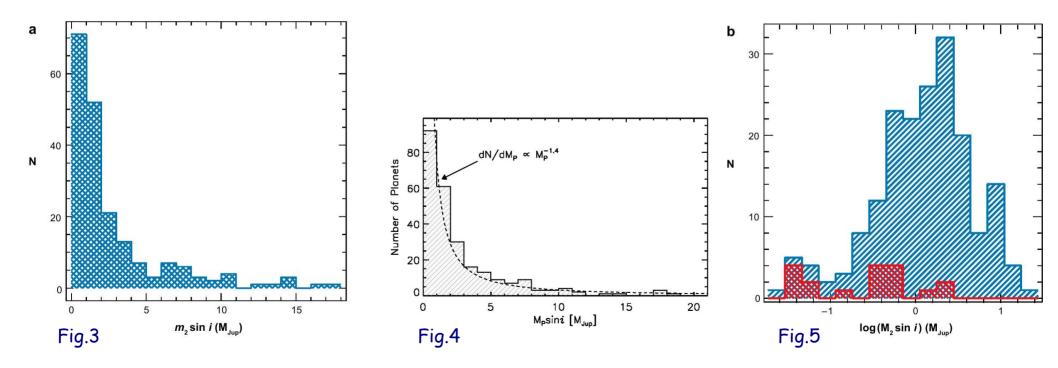
 $1 M_J \approx 318 M_E$

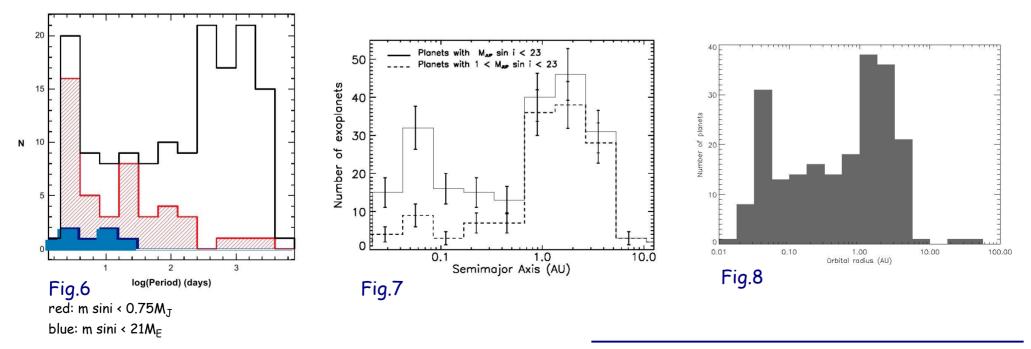


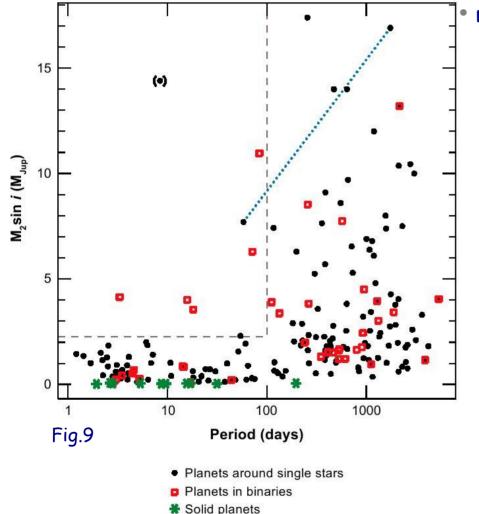

• planet vs. brown dwarf \rightarrow deuterium burning limit 13.6M_J

 \rightarrow formation process (core accretion vs. core collapse)

BD desert at ≈ 15-60M_J


• terrestrial (solid) planet vs. (gaseous) giant planet \rightarrow 10M_E?, different formation?


mass distribution


→ steep rise towards lowest masses, but also obs. bias toward lowest masses

• period distribution and semimajor axis distribution

- → connected via 3rd Kepler: $M_{tot}P^2 = a^3$, eg. 1yr → 1AU, 10d → 0.09AU
- > period gap (no observational bias)
- → peak at 3d or 0.04AU (a result of migration?)
- → peak at ≈250d or ≈0.8AU

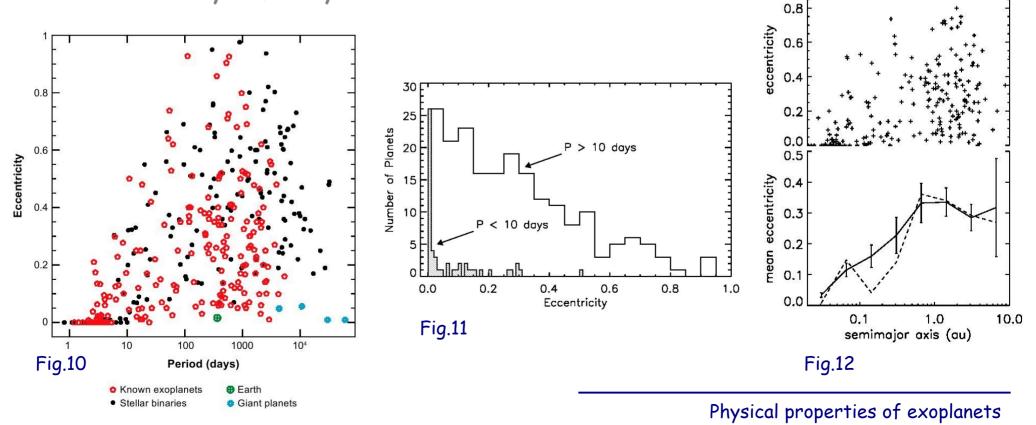
mass vs. period

→ lack of massive planets on short period orbits

with $m > 2M_J$ and p < 100d (0.4AU)

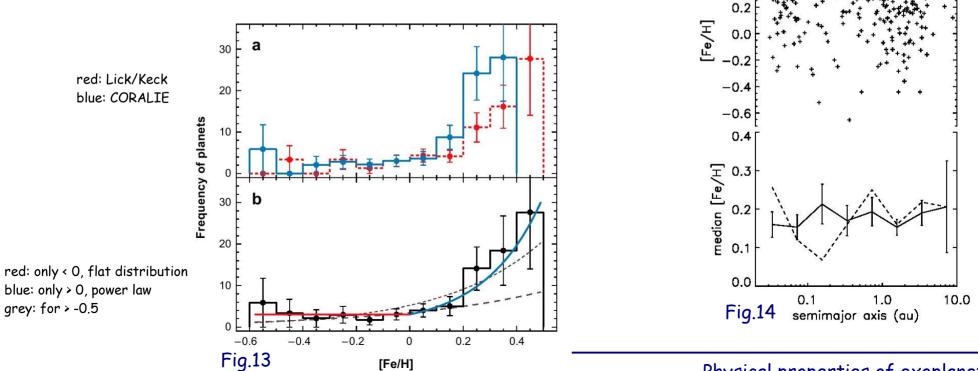
→ lack due to mass transfer?

evaporation?


infall?

- \rightarrow no obs. bias
- \rightarrow short period peak due to low mass planets
- → no difference between single hosts and binary hosts

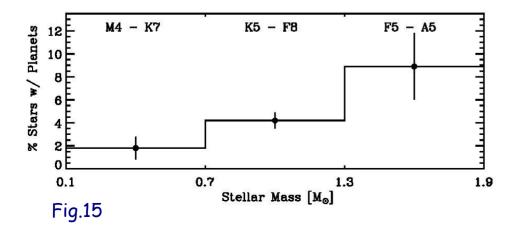
eccentricity

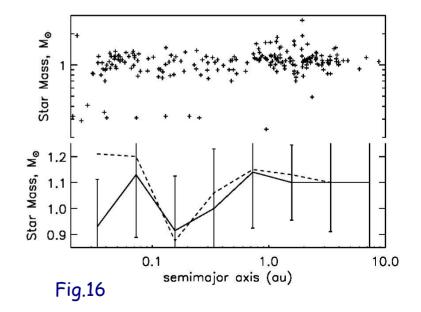

- \rightarrow circularization for p < 6d
- \rightarrow median of 0.24 for p > 10d (0.09AU)
- \rightarrow no obvious difference in planet and stellar binary populations

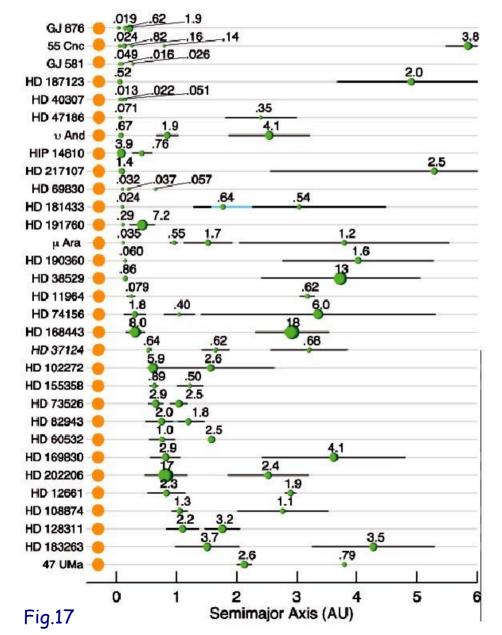
→ Solar System: very low eccentricities

1.0

- host star metallicity
 - → probability of finding a giant planet increases with host star metallicity
 - → no such trend for low-mass (solid) planets, but bad statistics so far
 - → metallicity excess due to external origin or conditions during formation?
 - \rightarrow no trend with semimajor axis




Physical properties of exoplanets


0.6 0.4

• host star mass

- \rightarrow probability for finding a planet is higher for higher mass host stars
- → observational bias due to sample limitations?
- → O,B,A stars too short lived?; 2nd generation planets around evolved stars?
- \rightarrow low mass planets seem to be more common around M-dwarfs
- \rightarrow no correlation with semimajor axis

multiple-planet systems

- \rightarrow high eccentricities for large orbits
- \rightarrow mean motion resonances
- \rightarrow orbital parameters seem to be

indistinguishable from single planet

systems

→ problems: low amplitude RV signals from long period planets, which may easily be absorbed in a single-planet Keplerian orbit solution...

horizontal lines: periapse and apoapse in eccentric orbits numbers: minimum masses in Jupiter masses

Summary (Part 2)

- 353 exoplanets, most are giants, bias due to detection method
- earth-mass planets will be found in the near future
- steep rise towards lower masses
- period gap
- no close-in massive planets
- circularization for close orbits
- whole range of eccentricities for large orbits
- metallicity excess

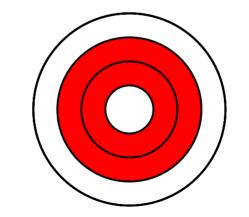
- Part 1 (Anne):
 - Introduction, Detection methods
- Part 2 (Ronny):
 - Physical properties, Statistics
- Part 3 (Anne):
 - Dynamical properties, Atmospheres
- Part 4 (Ronny):
 - Habitability of exoplanets

- Part 1 (Anne):
 - Introduction, Detection methods
- Part 2 (Ronny):
 - Physical properties, Statistics
- Part 3 (Anne):
 - Dynamical properties, Atmospheres
- Part 4 (Ronny):
 - Habitability of exoplanets

Habitability of exoplanets

- habitability → life, biology, chemistry
- exoplanets → astronomy, geology

life (as we know it) is based on carbon and liquid water:

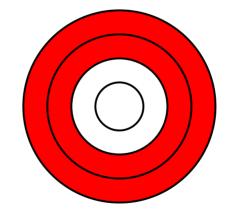

main bulding blocks: H, C, O, N, (P, S), liquid H_2O

• HZ: distance from a star, where liquid water can exist on the surface

- \rightarrow determined by T_S
- → definition neither necessary nor sufficient
- \rightarrow habitability does NOT imply that an environment is inhabited

• CHZ: region in which liquid water can be maintained throughout most of the star's lifetime

 \rightarrow L of the host star increases with time \rightarrow HZ moves outwards

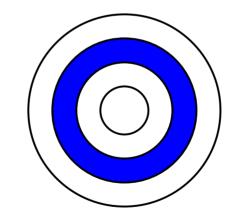

HZ at t₀

• HZ: distance from a star, where liquid water can exist on the surface

- \rightarrow determined by T_S
- → definition neither necessary nor sufficient
- \rightarrow habitability does NOT imply that an environment is inhabited

• CHZ: region in which liquid water can be maintained throughout most of the star's lifetime

 \rightarrow L of the host star increases with time \rightarrow HZ moves outwards

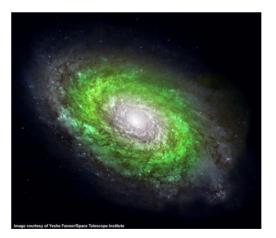

HZ at t₁

• HZ: distance from a star, where liquid water can exist on the surface

- \rightarrow determined by T_S
- → definition neither necessary nor sufficient
- \rightarrow habitability does NOT imply that an environment is inhabited

• CHZ: region in which liquid water can be maintained throughout most of the star's lifetime

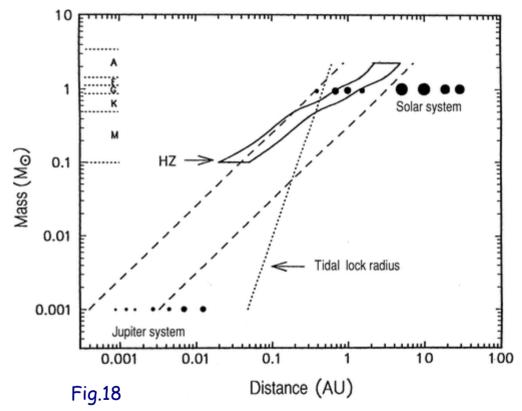
 \rightarrow L of the host star increases with time \rightarrow HZ moves outwards


CHZ

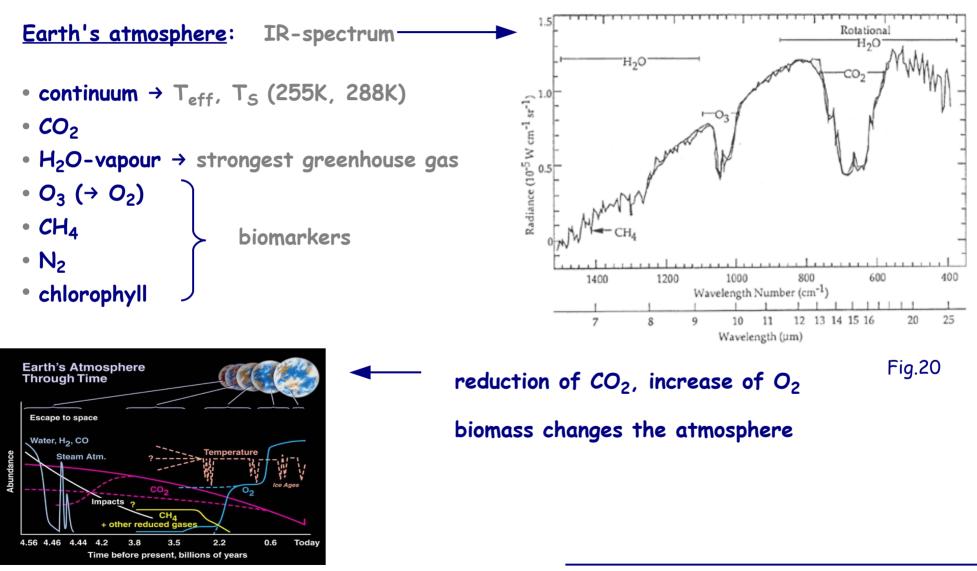
• HZ: distance from a star, where liquid water can exist on the surface

- \rightarrow determined by T_S
- \rightarrow definition neither necessary nor sufficient
- \rightarrow habitability does NOT imply that an environment is inhabited

• CHZ: region in which liquid water can be maintained throughout most of the star's lifetime


 \rightarrow L of the host star increases with time \rightarrow HZ moves outwards

• GHZ: habitable regions in the galaxy


 \rightarrow thin disk excluding the innermost and outermost parts

- boundaries for an earth-like rocky planet:
- → inner edge: water-loss, H-escape, runaway greenhouse
- → outer edge: condensation of
 atmospheric CO₂, formation of
 CO₂ clouds, increased albedo,
 runaway glaciation

solar system: HZ ≈ 0.95 - 1.67 AU CHZ ≈ 0.95 - 1.15 AU

Biosphere of a habitable planet

Habitability of exoplanets

Biosphere of a habitable planet

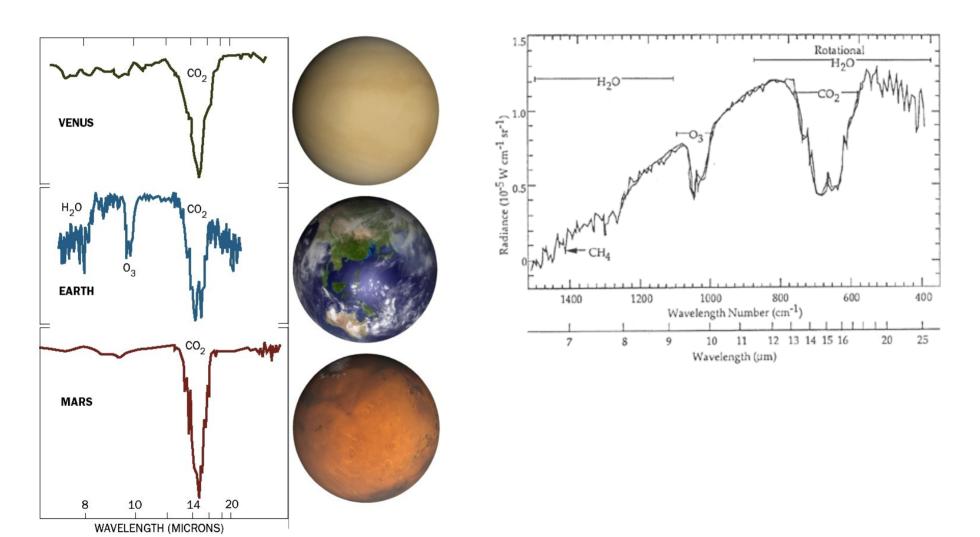
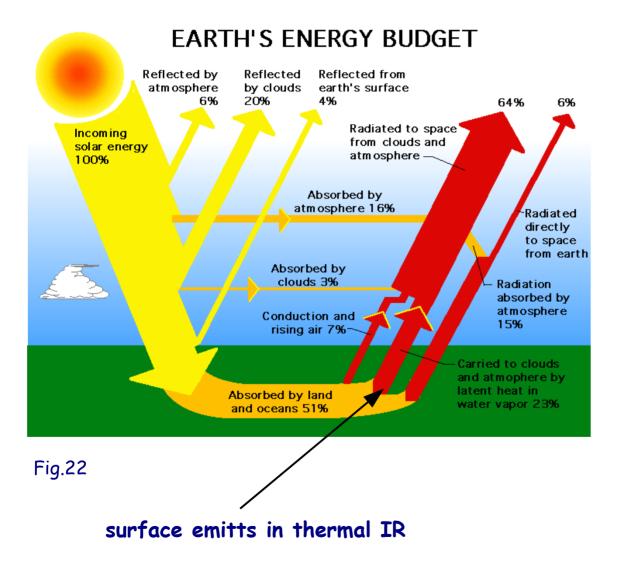



Fig.21

Climate of a habitable planet

various factors can disturb this budget and therefore the climate → the habitability !

Climate of a habitable planet

<u>feedback processes affect the climate:</u>

- **positive** \rightarrow destabilizing due to amplification of perturbations
- negative \rightarrow stabilizing response to perturbations

positive feedbacks:	snow / ice cover	→ runaway glaciation		
	atmospheric water vapour	→ runaway greenhouse		

negative feedbacks: carbonate-silicate-cycle

(T_S \leftrightarrow F_{IR,out} interaction)

Factors influencing habitability

<u>planetary properties:</u>

- climatic stability
- albedo \rightarrow cloud cover / ice+snow cover / ocean to land ratio
- presence of an atmosphere → protection from UV and impacts / pressure for liquid water
- atmospheric composition \rightarrow volatiles / albedo
- geological activity → plate tectonics / volcanism / internal heat
- magnetic field \rightarrow protection from charged particles
- rotation \rightarrow dynamo / MF
- obliquity → moderate seasons
- mass \rightarrow >0.3M_E \rightarrow maintain an atmosphere / activity

 $<10M_E \rightarrow$ prevent massive H-He atmosphere

- interaction with other planets \rightarrow orbital stability
- eccentricity of the orbit \rightarrow climatic stability

Factors influencing habitability

<u>external properties:</u>

host star → type

		<u>Main</u>	Sequence	<u>Stars</u>				
			•	•	•	•		
Spectral Type:	0	В	А	F	G	К	М	
Temperature:	40 000K	20 000K	8500K	6500K	5700K	4500K	3200K	
Radius (Sun=1):	10	5	1.7	1.3	1.0	0.8	0.3	
Mass (Sun=1):	50	10	2.0	1.5	1.0	0.7	0.2	
Luminosity (Sun=1):	100 000	1000	20	4	1.0	0.2	0.01	
Lifetime (million yrs):	10	100	1000	3000	10 000	50 000	200 000	
Abundance:	0.00001%	0.1%	0.7%	2%	3.5%	8%	80%	
Giant Stars			Vhite Dwarf	s	<u>Sup</u>	Supergiant Stars		
Low mass sta	Dyir	Dying remnant of an			High mass stars near			
the end of th	ieir lives.	i	imploded star.			the end of their lives.		
Spectral Type: N	lainly G, K or	M Spectr	al Type:	D	Spectral T	ype: O, B, A,	F, G, K or M	
Temperature: 3			erature: Und	er 80 000K		ure: 4000 :		
Radius (Sun=1):	10 to 50	Radius (Sun=1): Und	er 0.01	Radius (Sun	=1): 301	to 500	
Mass (Sun=1):	1 to 5	Mass (Sun=1): Und	er 1.4	Mass (Sun	=1): 101	to 70	
Luminosity (Sun=1):	50 to 1000	Luminosity (Sun=1): Und	er 0.01	Luminosity (Sun	=1):30.000	to 1000 000	
Lifetime (million yrs):	1000	Lifetime (mill	ion yrs):	_	Lifetime (million	yrs): 1	0	
Abundance:	0.4%		ndance:	5%	Abunda)001% _{rpowell}	

Fig.23

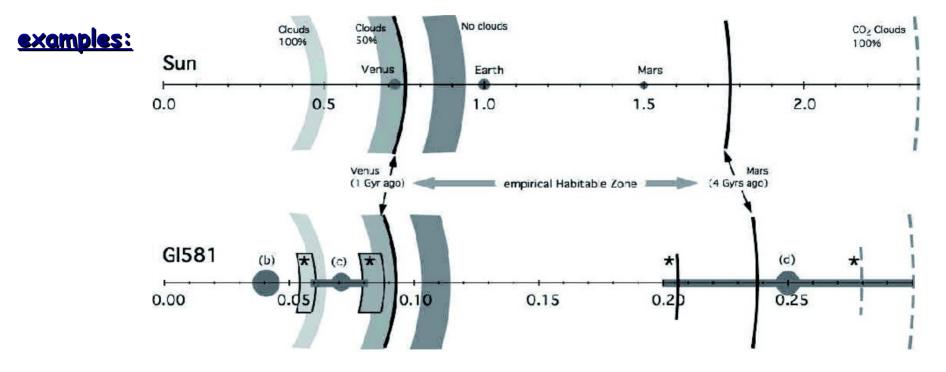
Habitability of exoplanets

Factors influencing habitability

<u>external properties:</u>

- host star → type
- presence of giant planets → destabilizing: migration through HZ (inner giants)
 stabilizing: impact shielding / orbital stability due to outer giants ?
- presence of a satellite \rightarrow Moon stabilizes Earth's obliquity (23.4°)
- stability around binary / multiple hosts ?
- impacts of comets / meteorites \rightarrow positive: delivery of volatiles / water ice / (and life?)

negative: destroying biospheres


• tidal locking / synchronous rotation \rightarrow extreme hemispheres

Habitable exoplanets ?

examples:

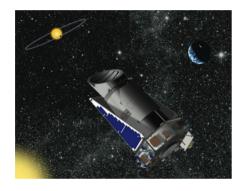
- Gliese 876d: 7.5M_E around 0.32M_S M-dwarf (0.02 AU) → too hot
- OGLE-05-390L b: $5.5M_E$ at $2.1AU \rightarrow too cold$

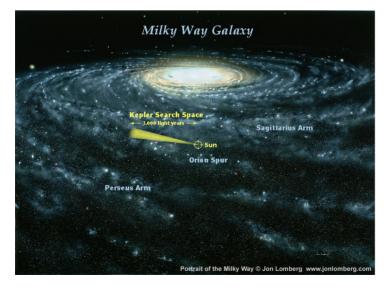
Habitable exoplanets ?

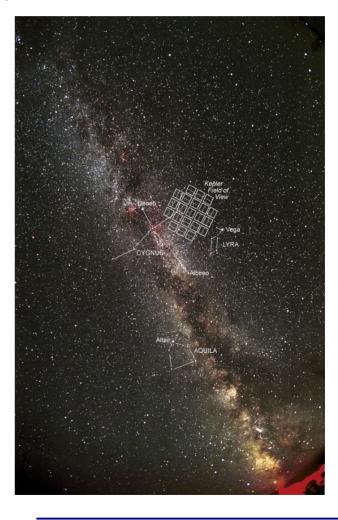
 \bullet Gliese 581: 0.31M $_{\rm S}$ M-dwarf, 3200K, 0.014L $_{\rm S}$

Fig.24

b: $15.6M_E$ at 0.04 AU \rightarrow outside HZ

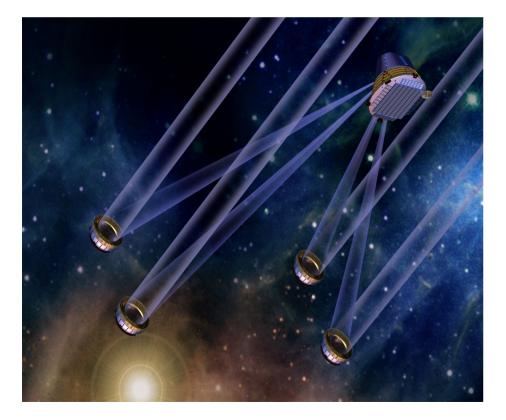

c: $5M_E$ at 0.07 AU \rightarrow only habitable for high albedo \rightarrow high cloud cover needed


d: $8.3M_E$ at $0.25 AU \rightarrow$ best candidate if M stays below $10M_E$ (i unknown)

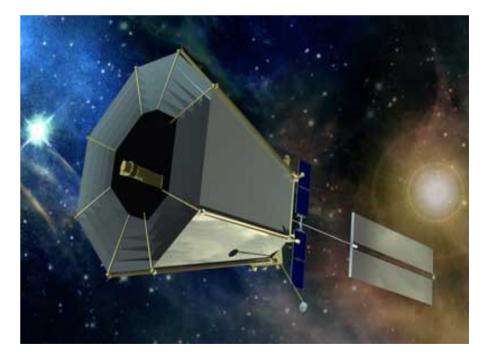

e: $1.97M_E$ at $0.03AU \rightarrow$ outside HZ, lowest mass known so far (17.06.2009)

Space missions - Kepler (NASA)

• 100000 stars simultaneously, 1.4m primary mirror, launched in Mar. 2009



Figs.: kepler.nasa.gov


Habitability of exoplanets

Space missions - TPF (NASA)

indefinitely postponed, IR-Interferometer array or optical telescope

TPF-I

TPF-C

Figs.: nasa.gov

Space missions - Darwin (ESA)

• 6 IR telescopes (>3m) as Interferometer, launch 2015 or later

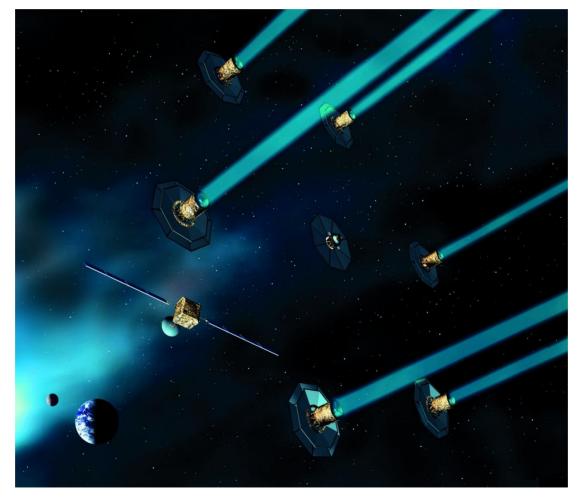


Fig.: esa.int

Summary (Part 4)

- definition of a "habitable zone"
- atmospheric features as biomarkers
- various factors (planetary and external properties) can influence habitability
- Gliese 581 system as most promising candidate

References

- Johnson, J.A. 2009, arXiv:0903.3059v1
- Mason, J. 2008, Exoplanets Detection, Formation, Properties, Habitability, Springer
- Udry, S., Santos, N. 2007, ARAA, 45, 397

www.exoplanet.eu

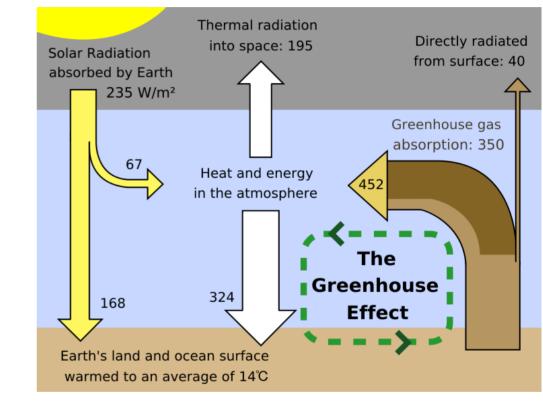
- Astrobiology Primer 2006, Volume 6, Number 5
- Gilmour, Sephton, An Introduction to Astrobiology, Open University
- Kasting et al. 1993, Icarus, 101, 108
- Kasting et al. 2003, ARAA, 41, 429
- Selsis et al. 2007, A&A, 476, 1373

Figures:

Fig.1: Udry&Santos (2007) Fig.2: Mason (2008) Fig.3: Udry&Santos (2007) Fig.4: Johnson (2009) Fig.5: Udry&Santos (2007) Fig.6: Udry&Santos (2007) Fig.7: Mason (2008) Fig.8: Mason (2008) Fig.9: Udry&Santos (2007) Fig.10: Udry&Santos (2007) Fig.11: Johnson (2009) Fig.12: Mason (2008) Fig.13: Udry&Santos (2007) Fig.14: Mason (2008) Fig.15: Johnson (2009) Fig.16: Mason (2008) Fig.17: Johnson (2009) Fig.18: Kasting et al. (1993) Fig.19: shayol.bartol.udel.edu/~rhdt/diploma/lecture_9 Fig.20: astrobiology.arc.nasa.gov Fig.21: markelowitz.com/exobiology.htm Fig.22: Image courtesy: NASA's ERBE program Fig.23: www.atlasoftheuniverse.com Fig.24: Selsis et al. (2007)

Additional material

Biosphere and climate of a habitable planet


the greenhouse effect:

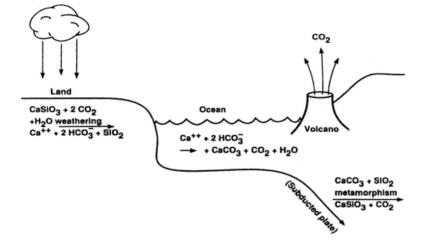
 raise of T_S because of greenhouse gases (H₂O-vapour, CO₂,...)

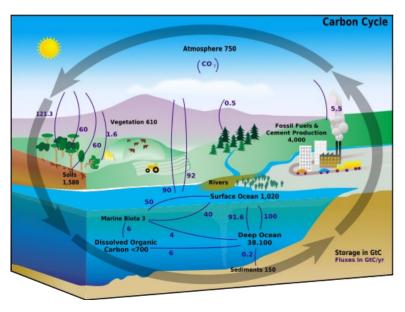
 transparent in UV, V but absorbing in IR

 \downarrow

 emitted thermal IR radiation is re-emitted to the surface

İnstitut für Astrophysik

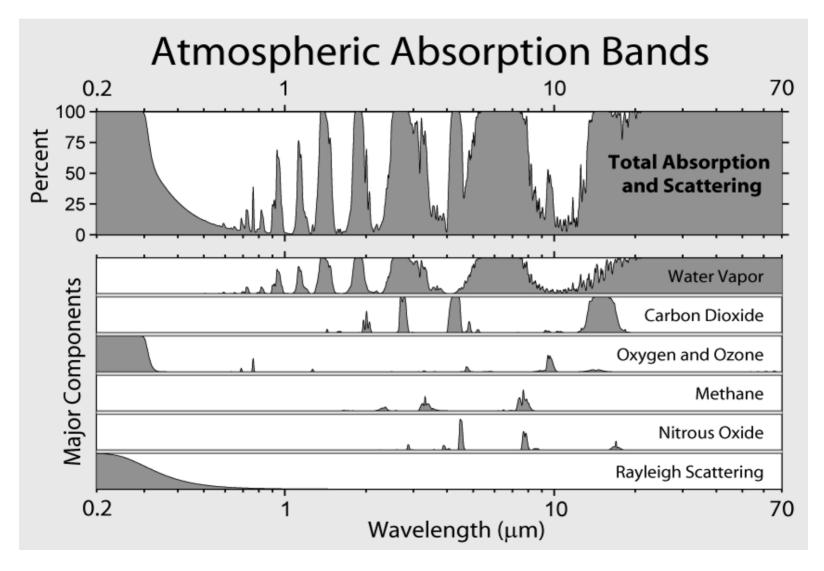

GÖTTINGEN


without the greenhouse effect, our Earth would be frozen !

 \rightarrow in a positive feedback, this effect may become runaway !

Biosphere and climate of a habitable planet

the carbonate-silicate-cycle:


- regulates the amount of atmospheric CO₂
- removed by silicate weathering
 - \rightarrow bound to carbonate rocks
 - \rightarrow subducted to high T, P (plate tectonics)
 - \rightarrow unbound again
- added by volcanic activity

negative feedback due to the dependence of the weathering rate on T_S (liquid water):

 $\begin{array}{l} T_S \text{ rises} \rightarrow CO_2 \text{ concentration falls} \\ T_S \text{ falls} \rightarrow CO_2 \text{ concentration rises} \end{array}$

→ stabilization of the climate (in humans would not interact...)

