Remote Sounding of the atmospheres of Venus and Titan in the submm-wave region

Miriam Rengel

Hartogh P., Jarchow C., Sagawa H.

02.12.2009

MPS Lecture

nyright (C) 2005, by Eshad Sulehria, http://www.povacelestia.com

Introduction

- Principles of remote sensing Approach to retrieve parameters Outlook
- **Applications- Examples**
 - 1st Example : Mesospheric Winds, Thermal Structure, and CO Distribution on Venus
 - Spectral Line Observations of Venus
 - Approach to retrieve thermal structure and CO distribution
 - Results: Thermal structure and Winds
 - Conclusion and Outlook for the future
 - 2nd Example: Atmospheric Gases of Titan. APEX observations
 - Spectral Line Observations of Titan
 - Approach
 - Results: CO and HCN
 - Conclusion and Outlook for the future
 - 3rd Example: Atmospheric Gases of Titan. Predictions for Herschel

MPS Lecture

- Planned observations
- Approach
- Results: Synthetic spectra of Titan
- Results: water CO, HCN, CH4
- Conclusion
- Future of planetary observations in the mm/submm

02.12.2009 Where to consult?

Inference of Atmospheric Structure from Remote Radiation Measurements*

LEWIS D. KAPLAN Massachusetts Institute of Technology, Cambridge, Massachusetts (Received April 27, 1959)

A detailed analysis of the structure of the atmosphere, including the three-dimensional distribution of temperature and water vapor, can be obtained from the spectral variation of its thermal radiation as viewed from a reconnaissance aircraft or earth satellite. In order that the measurements be capable of unambiguous interpretation, however, it is essential that the selection of spectral intervals to be used are based on a carefully planned interpretation scheme.

A possible program is outlined, in which the temperature distribution is obtained by measurements in the 15- μ CO₂ band and the water vapor distribution obtained by simultaneous measurements in the rotational band. The temperature-and-pressure dependence of the absorption coefficients must be taken into account. The instrument should be a multiple-slit or multiple-detector grating spectrometer, capable of resolving

The instrument should be a multiple-slit or multiple-detector grating spectrometer, capable of resolving 10 cm^{-1} at 15μ .

Spectral models and methods of analysis of the spectra are discussed briefly.

What is the sub-mm/mm region?

THE ELECTROMAGNETIC SPECTRUM

Sub-mm: 0.1mm – 1mm mm: 1mm – 10mm Cm 1cm - 10cm 300GHz-3 THz 30 GHz -300 GHz 3 GHz - 30 GHz

 $f = c / \lambda$

02.12.2009

But, how the spectrum is formed?

We need:

- For deriving the temperature profile: resolve the spectral shape
- For detecting weak and narrow lines of molecular species: very high spectral resolution

02.12.2009

Heterodyne Technique

The source signal is combined with the signal of the LO.

Mixing shifts signal (preserving spectroscopic information)

RF signal processing, amplification, analysis, etc. does not add noise

The main advantage is the capability to provide high-resolution spectroscopy!

Thermal emissions spectra of terrestrial planets

Thermal emission spectra of Giants and Titan

Spectrometry of the thermal radiation Wavelength range mid – far-IR (3 – 1000 μm) Wavelength range microwaves (0.1mm- 10cm) **4** Good sensitivity to 1. atmospheric temperature and 2. total number of molecules **4** Both day and night side observations **4** Multiple scattering is usually of minor importance

How? Ingredients

Observations Deriving information from the spectra Forward model – Inversion Algorithm

To model the expected observed emission spectra

To retrieval physical parameters as the mixing ratio

Physical and mathematical basis of the forward and retrieval models

RT : Asuming LTE,

Specific intensity of the radiation at S_r

$$I_{v}(s_{r}) = I_{v}(s_{e})e^{-\tau_{v}(s_{e},s_{r})} + \int_{s_{e}}^{s_{r}} \alpha_{v}(s)B_{v}(T)e^{-\tau_{v}(s,s_{r})} ds$$

Radiation entering the atmosphere

 $I_{v}(s_{\rm r})$

 $T_{\rm B}(v,s_{\rm r}) \equiv \frac{c^2}{2k_{\rm B}v^2}$

$$\tau_{\nu}(s_1, s_2) = \int_{s_1}^{s_2} \alpha_{\nu}(s') \, \mathrm{d}s' \qquad \qquad B_{\nu}(T) = \frac{2h\nu^3}{c^2} \frac{1}{\mathrm{e}^{h\nu/k_{\mathrm{B}}T} - 1},$$

opacity Absorption coefficient

 T_B = brightness temperature h= Planck's constant c= speed of light k_B = Botzmann's constant

02.12.2009

Principles of the temperature remote sensing

In strong bands thermal radiation forms at different altitudes depending on wavelength (7 ~ 1 rule)

- **4** Gas should be well mixed, not variable, with known abundance
- **4** Local thermodynamic equilibrium (LTE)
- **4** Vertical resolution ~ half a scale height

$$\int_{+\infty}^{-\infty} B_{\nu}[T(\xi)] \cdot K_{\nu}(\xi) d\xi = I(\nu) \qquad \qquad B_{\nu}[T] = B_{\nu}[T_{0}] + \frac{\partial B}{\partial T} \Delta T(\xi)$$
$$\int_{+\infty}^{-\infty} K_{\nu}(\xi) \cdot \frac{\partial B}{\partial T}[T_{0}] \cdot \Delta T(\xi) d\xi = I_{\nu} - I_{\nu}[T_{0}]$$

Temperature retrieval is an **ill-posed** problem. Special **stabilization (regularization)** methods are required

Vertical sounding of the temperature structure

Ground-based observations of planetary atmospheres

02.12.2009

The Earth's Atmospheric Window

Space-based astronomy

the Earth's atmosphere is partially transparent

Ground-based astronomy

numerous water vapour absorption bands: observing sites have to be dry, cool, and with stable weather conditions

These various atmospheric 'windows' determine which kinds of astronomy can be done from the ground, and which have to be done from space. 21

Ground-based observations

The difficulties of observations of Titan at mm - submm

weakness of the spectral features (radiation of Titan is weak compared to the strong sky background)
difficulty to obtaining a good signal-to-noise ratio (the observed flux that is, in

general, on the order of a few tens mK in antenna temperature units)

We need:

good performance of the telescope
excellent and stable atmospheric conditions

Anntenas must be very large Detectors must be very sensitive

Why study Venusian atmospheric dynamics ?

•To understand the possible consequences of future climate changes on Earth

Polar bear forages on dry ground, Barrow AK © 2002 Braasch

Why study Venusian atmospheric dynamics ?

To assess extrasolar planet's habitability

Example 1

Why study Venusian atmospheric dynamics ?

•To learn about Venus itself

The atmosphere of Venus can be vertically split into three different dynamical regions :
(1) the troposphere: below 70 km:
(2) the thermosphere, above z = 120 km :
(3) the mesosphere, between z=70 and 120 km.
Combination of two different wind regimes sub-solar to anti-solar flow pattern time-variable retrograde super rotation
* acts as a transition region

On 5th June 2007: NASA **MESSENGER** spacecraft encompassed a flyby to Venus ESA's Venus Express orbites around Venus

MESSENGER Second Venus Flyby

Credits:JHU/APL

Both spacecrafts carried out multi-point observations of the Venusian atmosphere for several hours.

02.12.2009

A 1st coordinated observational campaign [23 May – 9 June (later) 2007]:

Remote sensing from Earth - radio, submillimetre, infrared and visible -

Chil

Space

Credits:JHU/APL

Spacecrafts & Satellites: Venus Express Messenger IRTF Texes JCMT-15m VLT-UVES Keck-HIRES OHP/Sophie Nobeyama IRAM-30m

27.11.2009

MPS Lecture <u>http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=41012</u>

Space

Spacecrafts & Satellites:

A 2nd coordinated observational campaign [January – June 2009]:

MPS Lecture

Remote sensing from Earth - radio, submillimetre, infrared and visible -

Keck-HIRES APO/ARCES CFHT/ESPaDOnS Okayama/HIDES AAT/IRIS 2 JCMT-HARP/ACSIS SMA SMT ARMA Itt Peak/THIS

27.11.2009

Credits: JHU/APL

Venus Express

Science Goals

During the coordinated ground-based campaigns, observations by the different teams focuses on the atmosphere above Venus's cloud layer and include:

- Wind measurements at different altitudes
 - cloud top level: visible spectroscopy
 - mesosphere (90-105 km): mm/submm spectroscopy
 - thermosphere (120 km): 10 µm observations
- Morphology of the mesosphere airglow emission (O, O2)
- Mesospheric composition (H2O, SO, SO2, HCI)
- Deep atmosphere nightside va composition

-retrieve temperature vertical profiles
-retrieve vertical profiles of CO
- Obtain wind velocities

mpositionDirect measurements of wind from DopplerShift of CO line and mapping the wind velocitynightsidevariation on the Venusian disk

Credits: ESA

How? Ingredients

Observations Deriving information from the spectra Forward model – Inversion Algorithm

To model the expected observed emission spectra

To retrieval physical parameters as the mixing ratio

II.- Spectral Line Observations of Venus

Between 7.6.07 and 16.6.07 (1st campaign)

10-m Submillimeter Telescope (HHSMT, Arizona) Instrumentation used:

Receivers: 345 SIS, 2mmJT/1.33JT ALMA [320-375] [210-279] GHz Backends: •Chirp Transform Spectrometer (**40 kHz**) •Acousto-Optical-Spectrometers (AOS´s) •Forbes Filterbanks (FFBS)

Results:

36 spectral line observations of Venus with the lines

CO J=3-2 - 15 min - SIS-345 ¹³CO J=2-1 - 30 min - 1.3mm ALMA ¹²CO J=2-1 - 150 min - 1.3mm ALMA

at 15 different beam positions at the Venus disk

Fractional disk illumination

Apparent disk of Venus for 2007 Jun 8 and 16 at 20:00 UT

N

wir-S Lecture

Beam positions on Venus's disk

02.12.2009

Spectra Morphology for the ¹²CO J = 2-1 line for different backends

Rengel, Hartogh, Jarchow, PSS 56, 1688, 2008

Very narrow, deep absoption lines are obtained!

02.12.2009

IV.- Results: Thermal structure and CO Distribution

02.12.2009

Rengel, Hartogh, Jarchow, PSS 56, 1688, 2008

IV.- Results: Thermal structure and **CO Distribution**

Act I

Example 1 - Results: Changes in the Thermal Structure

•Inversion $\int_{0}^{1} \int_{0}^{0} \int_{$

by SPICAV (Bertaux et al. 2007).Day-to-night temperature

variations ~25 K at 100 km (15 June)

• Temporal diurnal temperature variations ~10 K at 80 km and nocturnal at 100 km. 43

Example 1 IV.- Results: Wind Velocities

Fig. 15. Retrieved wind velocity measurements for different beam positions on the Venus' disc for two observing days. Squares: 14 June, triangles: 15 June. Retrieved velocity error bars are indicated. E: East, W: West.

MPS Lect Rengel, Hartogh, Jarchow, PSS 56, 2008, 1368

Winds measurements

date	alt.		SSAS mzs	reference	observatory
Dec 1985, Oct 1986, Mar 1987	109 ± 10	25 ± 15	120 ± 20	Goldstein etal. 1991	IRTF, 10 micron heterodyne. dayside only.
Apr. May 1988	99±6	132 ± 10	< 40	Shah etal. 1991	OVRO, interferometer ¹² CO (1-0)
Aug 1991	95 ± 6 105 ± 10	35 ± 15 95 ± 10	45 ± 15 90 ± 15	Lellouch etal. 1994	IRAM, single dish
Nov 1994	95 ± 6 105 ± 10	45 ± 30 75 ± 20	50 ± 35 110 ± 20	Rosenqvist etal. 1995	¹² CO (1-0) & (2-1)
Oct 2002	105	dominant	-	Clancy 2005	JCMT, single dish
Nov 2002	105	-	dominant	claircy 2000	¹² CO (2-1)
May-Sep 2007	Stro	ong varia	bility	#1 VEx - GBO Campaign (PSS 2008)	IRAM, APEX, JCMT, SMT PdBI, NMA

Table credits: Sagawa

Interferometric CO observations

Sub Millimeter Array (SMA)

Combined Array for Research in Millimeter Astronomy (CARMA)

→ status: Data analysis

	SMA	CARMA
	(Submillimeter Array)	(Combined Array for Research in Millimeter-wave Astronomy)
Observed Date		
Venus Diameter		
Day-Night Configuration	~50% of the disk is day./hightside	(ministra)
	· · · ·	
Antenna	8×6m#1	6 × 10.4 m, 9 × 6.1 m
Baseline length	9.5-25 m	11-150 m
Receiver Band		
Observed Lines	1	
Vind Sensing Alt.#2	95-105 km 105-110 km	95-100 km
FOV (FWHM)	48" 32"	60" (10m-antenna) #3
Spatial Resolution	4.3" × 3.0" 5.5" × 1.7"	4.9" × 4.6"
Freq. Resolution	100 kHz	30 kHz
Final Goal	Simultaneous retrieval of T(z), CO, wind vertical profiles by using 3 CO lines.	Visualize the wind pattern around the antisolar point, and map the enhancement of CO at nightside.

 →Succesfully measurements of the wind map at night hemisphere
 →Strong spatial inhomogenity in the wind pattern

Sagawa, Hartogh, Gurwell, Rengel, Moullet, in preparation

Example¹- Conclusion 1st Example

- We have carried out several HHSMT 12CO J = 2–1 and 13CO J = 2–1 line observations on different beam positions on Venus disc during June 2007 around the MESSENGER flyby of Venus and observations from Venus Express mission
- From the spectra we retrieved vertical profiles of temperature, CO distribution, and wind velocities for the June 2007 mesosphere of Venus
- Changes in the thermal structure of the Venus mesosphere are detected Day-to-night small temperature variations and short-term (day-to-day) on a time scale as short as one day variations of winds and temperature are evident in our data.

This is consistent with the picture of dramatic variability of the Venus mesosphere with changes in temperature occurring on short scales (Clancy et al., 2005; Sandor and Clancy, 2005).

- Retrieved winds show variations of around 100m/s between the winds on 14 June and those on 15 June.
- HHSMT line observations of 12CO J = 2–1 and 13CO J = 2–1 and retrieved thermal profiles of the mesosphere of Venus (the temperature peak detection at 90–100 km) seems to support the finding of the extensive layer of warm air detected by SPICAV onboard Venus Express.

MPS Lecture

Copyright (C) 2005, by Fahad Sulehria, http://www.novacelestia.com.

VI. - Outlook for the future

Dec. 2010 - Jan. 2011 3rd coordinated campaign

A proposed coordinated campaign in support of VEx-VCO at VCO orbit insertion in Dec. 2010

JAXA's Venus Climate Orbiter

2nd Example Atmospheric Gases of Titan: APEX observations

Based of the ESO project E-081.F-9812A-2008

discovered *Mimas* 1847 John Herschel suggested the

1655

name of Titan (sisters and brothers of *Cronos*, the Greek Saturn.)

Christiaan Huygens

The atmosphere of Titan can be vertically split into four different dynamical regions :

(1) the *troposphere*: below 45 km
(2) the *stratosphere*, between z=45 and 250 km
(3) the *mesosphere*, between z=250 and 500 km
(4) the *thermosphere*, above z = 500 km

51

Why Titan?

The origin of Titan's atmosphere is poorly understood and its chemistry is complicated:

* CH₄ is the second most abundant specie detected
*HCN is the most abundant nitrile on Titan
*CO origin is not well understood

Water, CO, nitriles, and hydrocarbons have been detected by spacecrafts and from Earth.

Titan observations with SWS/Grating of two water lines at 43.9 and 39.4 μ m respectively, along with the offsource spectra.

Coustenis et al. A&A. 336, L85-L89 (1998)

aneten Seminar *Coustenis et al*

The APEX Swedish Heterodyne Facility Instrument (SHFI) was installed on the APEX 12m telescope on Chajnantor in 2008

Goals

Credits: **⁵³**SA

 Test feasibility and capabilities of APEX-1 and APEX-3 for planetology, in particular for Titan's atmospheric observations. Full- disk spectroscopy of Titan.

Investigate possible vertical profile retrievals of CO and HCN with APEX-1.

How? Ingredients

Observations Deriving information from the spectra Forward model – Inversion Algorithm

To model the expected observed emission spectra

To retrieval physical parameters as the mixing ratio

Example 2 Spectral Line Observations of Titan Proposed lines: Time allocated: 11.5 hrs

12-m APEX Telescope (Chile)

Frequency	Integration Time
265.886 GHz	60 min (PWV 2 mm, rms 0.04 K, FFTS 16384)
258.156 GHz	39 min (PWV 2 mm, rms 0.04 K, FFTS 16384)
230.538 GHz	36 min (PWV 2 mm, rms 0.033 K, FFTS 16384)
	56 min (PWV 2 mm, rms 0.025 K, FFTS 16384)
	1.4 h (PWV 2 mm, rms 0.025 K, FFTS 16384)
	Frequency 265.886 GHz 258.156 GHz 230.538 GHz

(8.2 hrs observed - 2.5 hrs in very bad weather)

APEX-3

ADEV 1.

$HC^{15}N(5-4)$	Х	430.235 GHz	2 h (PWV 0.5 mm, rms 0.08 K, FFTS 16384)
CO (4-3)	Х	461.040 GHz	1.9 h (PWV 0.5 mm, rms 0.09 K, FFTS 16384)
	Х	4 z	1.6 h (PWV 0.5 mm, rms 0.055 K, FFTS 16384)

Between 21.3.08 and 27.6.08

Instrumentation used:

SHFI Receivers: APEX-1 [211-270] GHz Backends: FFTS1 (up to 122 kHz, Bandwidth 1 GHz) Mode: Position switching

02.12.2009

Results:

-Improvement of the control software. After this project it was possible to properly point and track data on a moving target.

- spectral line observations of Titan with the lines

CO J=2-1 - 13 min

HCMnder 3re 2 inar 19 min

The atmosphere above Llano de Chajnantor during these observations

Atmospheric window at Chajnantor

Annual variation of PWV at Chajnantor

APEX-1

Results: Titan's spectra

HCN(3-2)

CO(2-1)

Smooth 5

First observations of a planet/satellite with APEX-1 But not optimal for retrievals of vertical distributions... However 02.12.2009 **MPS** Lecture

S/N = 5

Example 2 III.- Modeling procedure

3rd step: Integrate and convolve with the antenna pattern

2nd step: Calculate RT along each ray path

Example 2 Adopted Titan's thermal and pressure profiles for the opacity calculations

Profile based on *Coustenis and B'ezard* 1995 & Yelle et al. 1991.

Atmospheric composition based on

Also used by: Gurwell 1995, 2000 CO Marten et al. 2002 HCN

The resulting spectra allow the retrieval of stratospheric CO and HCN profiles

02.12.2009

Example 2 IV.- Results

We investigate the possibility to retrieve the mixing ratio profiles of CO and HCN

Mixing ratio of CO (2-1)

assuming that CO is constant with altitude, we just compare observational and synthetic spectra

With 15 MHz spectral resolution: spectrally resolve the absorption line

02.12.2009

Altitude [km]	Mixing ratio (ppm)	Wavelength	Facility	Reference
Stratosphere	30-180	115.27 GHz	Modeling	30
Stratosphere	60 ± 40	2.6 mm	Owens Valley/2 elements interferometers	1
Troposphere	48^{+100}_{-32}	$1.57 \ \mu m$	Kitt Peak/Fourier transform interferometer	31
Stratosphere	2^{+2}	2.6 mm	IRAM-30m/3-mm SIS receiver	32
Stratosphere	50 ± 10	2.6 mm	Owens Valley/6 10.4 m diam, antennas	33
Troposphere	10^{+10}	4.8 mm	UK IR Telescope/CGS4 spectrograph	34
ropophere	-5-5		err ne telesepe/ e de tepeerograph	~~
Stratosphere	52 ± 6	$1.3\mathrm{mm}$	Owens Valley/antennas	35
Stratosphere	51+4	345 GHz	SMA /5 and 6 antennas	17
153-350	60	4.504.85 µm	VLT/ISAAC	36
Tropo-Stratosphere	45±15	$4.64 \ \mu m$	Cassini/CIRS	37
Stratosphere	47±8	3060 cm - 1	Cassini/CIRS	30

Table 2. CO mixing ratios

Rengel, Sagawa, Hartogh, submitted to AdGeo

Mixing ratio profile of HCN

-Try to retrieve the HCN vertical profile with the nomimal T1 profile \rightarrow no fits - Try to retrieve the HCN vertical profile with T2

Simulated observations and fitted spectra, HCN distributions for the simulated observations

02.12.2009

Poor S/N here Comparing these results must be considered cautiously...

Altitude [km]	Mixing ratio	Wavelength	Facility	Reference
Stratosphere	3.0×10^{-7}	88.6 GHz	IRAM-30m/SIS receiver	2
Stratosphere	1.6×10^{-7}	$713\mathrm{cm}^{-1}$	Voyager/IRIS	40
Stratosphere	$(0.75-52) \times 10^{-7}$	88.6	IRAM 30-m/SIS receiver	41
Stratosphere	$4.7 \times 10^{-8} - 1.5 \times 10^{-6}$	713 cm^{-1}	Voyager/IRIS	18
Stratosphere	$(0.5-4) \times 10^{-7}$	88.6 GHz	IRAM 30-m/SIS receiver	42
Stratosphere	3.0×10^{-7}	$713 {\rm cm}^{-1}$	ISO/SWS	43
83	3×10^{-5}	177.26 GHz	SMA/5 and 6 antennas	17
300	0.4×10^{-5}	177.26 GHz	SMA/5 and 6 antennas	17
400	$\sim 2 imes 10^{-5}$		Model prediction	44
400	10^{-6}		Model prediction	45
400	10^{-6}	$88.6\mathrm{GHz}$	IRAM-30m/SIS receiver	39
400	10^{-5}		Model prediction	46
500	10^{-6}	$712.25 \mathrm{cm}^{-1}$	Cassini/CIRS	47
~ 600	$7 imes 10^{-3}$	$3 \mu \mathrm{m}$	Keck II/NIRSPEC	46
700	10^{-5}		Model prediction	45
700	10^{-4}		Model prediction	46

Table 3.	HCN	mixing	ratios
----------	-----	--------	--------

Rengel, Sagawa, Hartogh, submitted to AdGeo

HCN Although still in progress, the retrieved HCN mixing ratio suggests higher HCN abundances than Marten's result, in particularly at altitude of 200-300 km.

Maybe this layer is an enriched HCN layer

Enriched air from the north pole becomes entrained in a Hadley type circulation cell and is advected to lower latitudes

02.12.2009

Example ²V.- Conclusion 2d Example

- We report the first observations obtained with the APEX-1 instrument on a planetary/satellite atmosphere taken during SV : CO(2-1) and HCN(3-2) on Titan.
- These observations improved the control software of the APEX telescope, now it is possible to track planets
- We investigate the CO and HCN composition of Titan's stratosphere. Our CO mixing ratio aproximation is consistent with some other authors. HCN profiles require further investigation.
- Nitriles and CO appears very favorable in the submillimeter range explored with the APEX telescope

VI.- Work to do

1.3 THz Observations at the APEX Telescope

This receiver covers a frequency band that won't be observed with the HIFI instrument of Herschel, and therefore both instruments could benefit from each other. The HIFI band 5 currently reaches 1271 GHz, therefore at least the **CO(11-10)** and **CS(26-25)** are observable with both receivers, which is very important for cross calibration purposes.

 Increase pointing measurements
 only initial relative offsets were found between the different bands within SHFI.

Fig. 15. Jupiter pointing in elevation (left) and azimuth (right).

3rd Example

Atmospheric Gases of Titan Predictions from Herschel

02.12.2009

MPS Lecture

Credits:ESA/AOES Medialab 68

II.- Herschel-based observations/simulations

Herschel Space Observatory will observe the "cool universe"

Credits:ESA/AOES Medialab

The HssO Program will result in a comprehensive set of sensitive and well-calibrated spectra of water, its isotopologues, and chemically related species in Solar System objects: Mars, **Outer Planets, Titan and Enceladus**, comfiets²⁰⁰⁹ MPS

Key Programme with guaranteed time:

"Water and Related Chemistry in the Solar System" P.I.: Paul Hartogh (MPS Linden) Hartogh et al. PSS 57, Issue 13, p. 1596, 2009.

Related Chemistry in the Solar System

HssO Participants

- Marek Banaszkiewicz¹,
- Frank Bensch²
- **Edwin A. Bergin³**
- Francoise Billebaud⁴
- Nicolas Biver⁵
- Geoffrey A. Blake⁶
- Maria I. Blecka¹
- Joris Blommaert²⁰
- Dominique Bockelée-Morvan⁵
- Thibault Cavalié, (Associate)
- **J**osé Cernicharo⁷ (mission scientist)
- Régis Courtin⁵
- Jacques Crovisier⁵
- **Gary Davis**⁸
- Leen Decin²⁰
- Pierre Encrenaz⁹ (mission scientist)
- **Thérese Encrenaz**⁵
- **Trevor Fulton**
- **Thijs de Graauw¹⁰ (ex HIFI-PI)**
- Armando Gonzalez (Affiliate)
- Paul Hartogh¹¹ (PI, coordinator)
- Damien Hutsemékers¹²
- Christopher Jarchow¹¹ (Col)
- **Emmanuël Jehin**¹²
- Mark Kidger²²
- Michael Küppers
- Arno de Lange
- 27.11.209sa-Maria Lara¹³

- Sarah Leeks
- Emmanuel Lellouch⁵
- Dariusz C. Lis⁶
- Rosario Lorente22
- Jean Manfroid21
- Alexander S. Medvedev¹¹ (Col)
- Raphael Moreno5
- David Naylor14
- Glenn Orton15
- Ganna Portyankina
- Miriam Rengel¹¹ (Col, HIFI Calibration Scientist)
- Hideo Sagawa (Associate)
- Miguel Sánches-Portal22
- Rudolf Schieder16
- Sunil Sidher17
- Daphne Stam18
- Bruce Swinyard17
- Slawomira Szutowicz1
- Gillian Thornhill22
- Nicolas Thomas19
- Miguel de Val Borro (Associate)
- Bart Vandenbussche20
- Eva Verdugo22
- Christoffel Waelkens20
- Helen Walker17

70

Planned Spectral Line Observations of Titan Instruments onboard Herschel:

Heterodyne Instrument for the Far-Infrared (HIFI). P.L. F. Helmich, SRON

Resolutions: 140, 280, 560 kHz, 1.1 MHz

Spectrometer

Photodetector Array Camera and Spectrometer (PACS).PI: A. Poglitsch, MPE55 – 210 μm

Credits: ESA side

Spectral and Photometric Imaging Receiver (SPIRE). PI: M. Griffin, Cardiff University Photometer: 250, 350, 500 μm

02.12.2009

MPS Lecture

Spectrometer: 194- 672 $^{7}\mu$ m.

Example 3 Herschel and Planck launch: Fantastic launch, good performance, great ground segment.

Example 3

Table 8: Detailed list of outer planet observations

The programme with the Herschel Space Observatory

Table 9: Observation times (sec) for H2O line spectral scans with PACS

Line (GHz)	Uranus	Neptune	Titan
4600	2250	2250	4100
4512	250	250	500
4469	450	450	800
3977	350	350	650
3654	1100	1100	2000
2774	290	290	550
2392	2040	2040	3800
Total	2h	2h	3.5 h

Investigate possible vertical profile retrievals of H_2O , HCN, and CO with HIFI and PACS for the expected signal-to-noise ratios.

Example ³ III.- Modeling procedure

3rd step: Integrate and convolve with the antenna pattern

2nd step: Calculate RT along each ray path

Example 3 Adopted Titan's thermal and pressure profiles for the opacity calculations

Example 3 V.- Results

Synthetic spectra of the Herschel Spectroscopic observations of Titan

We show model calculations of the synthetic spectrum of Titan's atmosphere (CH4, H2O, HCN and CO) with the SPIRE (0.04 cm-1), PACS (1-4 GHz) and HIFI (1 MHz) spectral resolutions.

MPS Lecture

Example 3 Results - PACS

We determine a temperature profile from the emission spectra of CH4 We retrieve the mixing ratio profiles of the species

Temperature profile

Temperature weighting functions for CH4

Results after considering PACS spectral resolution and range Scan mode.

Temperature retrieval from the PACS CH4 range scan mode (S/N 100). Blue : used to calculate the synthetic spectra Red: retrieved profile

Averaging kernels of the retrieved temperature

MPS Lecture

Exampl*R*³ trieval simulations of water mixing rations

Line scan mode Combinati on of 10 lines

Example 3

IV.- Conclusion 3rd Example

We have calculated the expected full range spectra of Titan's with HIFI, PACS and SPIRE. More than 10 CH4 rotational lines are expected to be detected by PACS, but it is not able to resolve the shape lines. \rightarrow A combination of lines lets to retrieve the Titan's atmospheric temperature at 20-140 km.

High spectral resolution spectra of water is expected to be observed with HIFI, which enable us to retrieve the water mixing ratio at the altitude range of 100-400 km.

It is also expected that the line scan observations of multiple water lines with PACS will contribute to constraints the water abundances.

These results in preparation for Herschel show out technique to be a promising tool for the analysis of Titans atmospheric data.

27.11.2009

Proposed Cassini-Huygens Solstice Mission (additional 7-year phase)

XXM Science Objectives - TITAN

Seasonal-Temporal Change

- Determine seasonal changes in the methane/hydrocarbon hydrological cycle
- Determine seasonal changes in the high latitude atmosphere

New Questions

- Determine the types, composition, distribution, and ages, of surface units
- Determine internal and crustal structure
- Measure aerosol and heavy molecule layers and properties

Future of planetary observations in the mm/submm

 Atacama Large Millimeter Array Project (ALMA)
0.3 mm – 9.6 mm
50 12m dishes
Ready in 2012

James Webb Space Telescope (JWST) 0.6 μm – 28 μm Telescope 6.5m Launch: 2013

MPS Lecture

We have just begun to answer some of the greatest questions conceived... but the best is yet to come.

Finale

Be tuned and always wondered!

Where to consult?

Atmospheric Remote Sensing by Microwave Radiometry Michael A. Janssen (Editor)

Giant Planets of Our Solar System: Atmospheres, Composition, and Structure Patrick G.J. Irwin (Author) ATMOSPHERIC REMOTE SENSING BY MICROWAVE RADIOMETRY

Michael A. Janssen Abidume is the Widey Senser and Resolution In Automa, Sense Editor

GIANT PLANETS

ospheres, Cor

AR SYSTEM

Patrick Irwin

OF OUR

and Structure Second Edition

2 Springer

MPS Lecture

02.12.2009

Copyright (C) 2005, by Fahad Sulehria, http://www.novacelestia.com.

83

Where to consult? Venus

- M. Rengel, P. Hartogh, C. Jarchow. <u>"HHSMT Observations of the Venusian Mesospheric</u> <u>Temperature, Winds, and CO abundance around the MESSENGER Flyby"</u>, 2008, Planetary and Space Science, 56, 1688-1695. doi:10.1016/j.pss.2008.07.014
- M. Rengel, P. Hartogh, C. Jarchow. <u>Mesospheric vertical thermal structure and winds on</u> <u>Venus from HHSMT CO spectral-line Observations</u>", 2008, Planetary and Space Science, Volume 56, Issue 10, , Ground-based and Venus Express Coordinated Campaign, Ground-based and Venus Express Coordinated Campaign, August 2008, Pages 1368-1384. DOI information: 10.1016/j.pss.2008.07.004

Titan - APEX

Rengel, Sagawa, Hartogh, Adv Geo, submitted AdvGeo

Herschel plans/project

- Hartogh P., Lellouch E., Crovisier J., and the HssO Team, "Water and related chemistry in the Solar System. A Guaranteed Time Key Program for Herschel", PSS 57, Issue 13, 2009, pags 1596-1606. doi:10.1016/j.pss.2009.07.009
- Titan : preparations for Herschel

Rengel M., Sagawa H., Hartogh P. "Retrieved Simulations of Atmospheric Gases from

Herschel observations of Titan". Advance in Geosciences, in press 02.12.2009 MPS Lecture