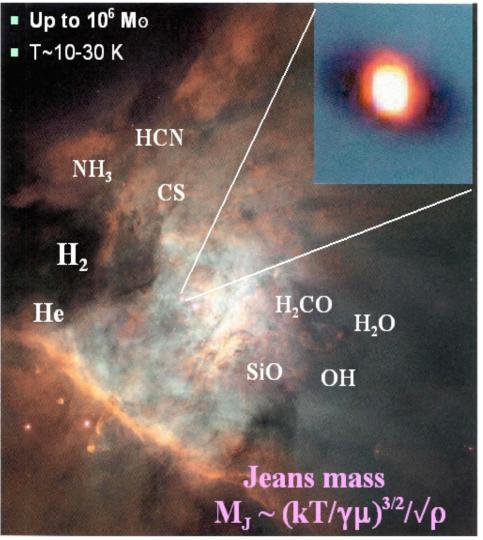
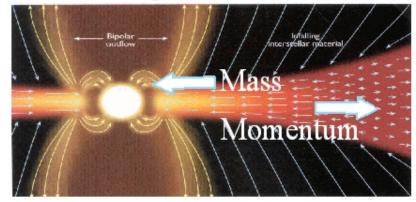
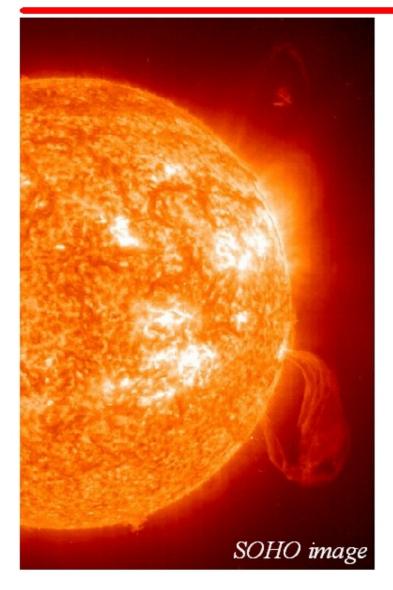

Origin and evolution of planetary atmospheres


Sun in the Galaxy


- N ~ 10¹¹ stars
- R_{sun} ~ 30,000 l.y.
- ρ ~ 1star/300 (I.y.)³
- V_{sun} ~ 250 km/s
- T_{sun} ~ 250 Myears

Origin of the solar system

Orion nebula



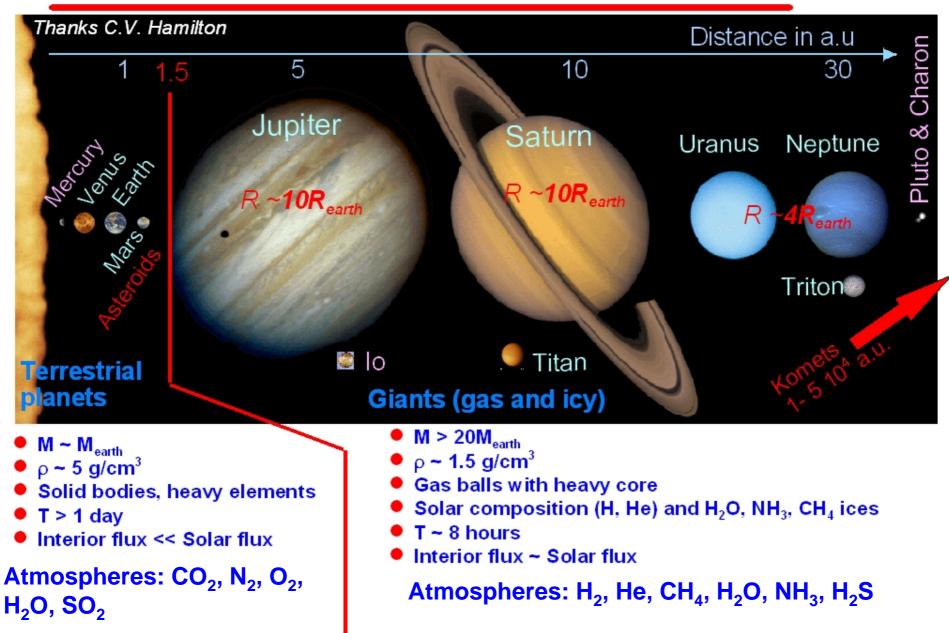
Protoplanetary disc

- Gravitational collapse of a molecular cloud (N~10⁴, T~ 30K)
- Infall stage (10⁵ 10⁶ years)
- Formation of protoplanetary disc
- Momentum re-distribution
 - Magnetic field
 - Gravitational torques
 - Turbulent viscosity
- Fragmentation
- Clearing stage (T-Tauri) 10⁶ 10⁷ years after protostar formation
- Observations of proplyds disc like structures (~100 a.u.) Around the young stars

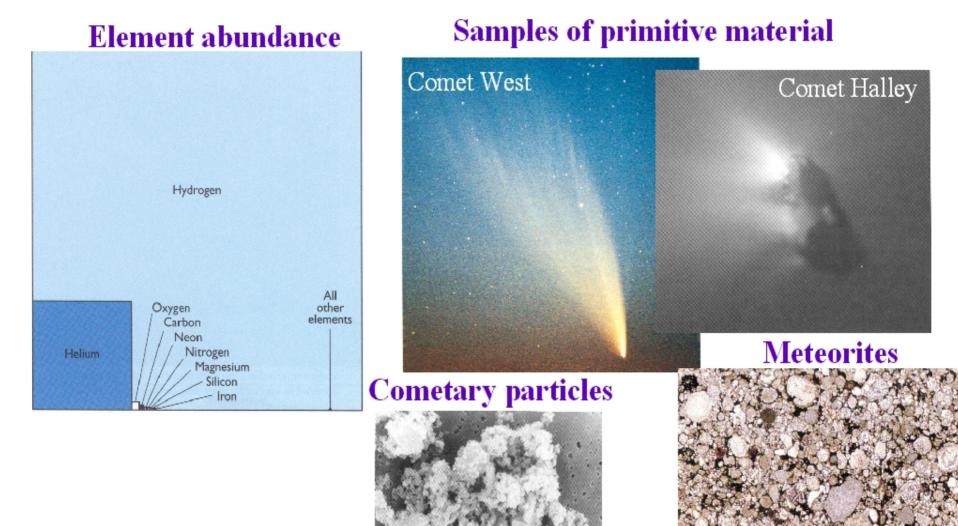
Here comes the Sun...

- R⊙ ~ 7·10⁵ km = 109 R⊕
- M⊙ ~ 2·10³³ g
- ρ⊙ ~ 1.4 g/cm³
- Composition
 - H₂ = 76.4%
 - He = 21.8%
 - Heavy elements < 2%</p>
- Spectral class G2
- T_{ef} ~ 5800 K
- Age ~ 5·10⁹ years

Formation of planets

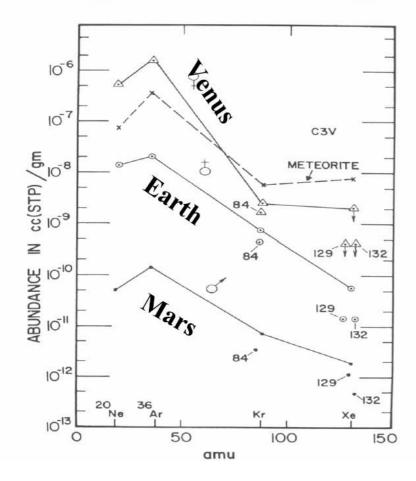

Inner zone

- T~ 500-1000 K
- Silicate and iron compounds
- Chondrules ⇒Fast cooling processes
- Growth to 1 km size planetesimals
 - Gravitational instabity in quiet disc
 - Or two-body colisions in turbulent disc
- From planetesimals to protoplanets
 - Collisions between planetesimals
 - Runaway growth of embrios (v << v_{esc})
 - Time scale ~10⁷ 10⁸ years
- Formation of planets
 - Differentiation of interiors
 - Formation of proto-atmospheres (blanketing effect)


Outer zone


- T~ 100K
- H₂, He and ices H₂O, CO₂, NH₃....
- Significant amount of heavy elements as compared to solar
- Fast accretion of gas (t~10 My)
- Effective accretion of heavy elements
- Scenario 1: Gravitational collapse
 - Disagreement with the data on compositio and structure
- Scenario 2: Accretion + gas accumulation
 - Formation of solid core (0.1M_{earth}, 1My)
 - Gas runaway accretion (10M_{earth}, 10My)
 - Contraction (~0.01-0.1 My)

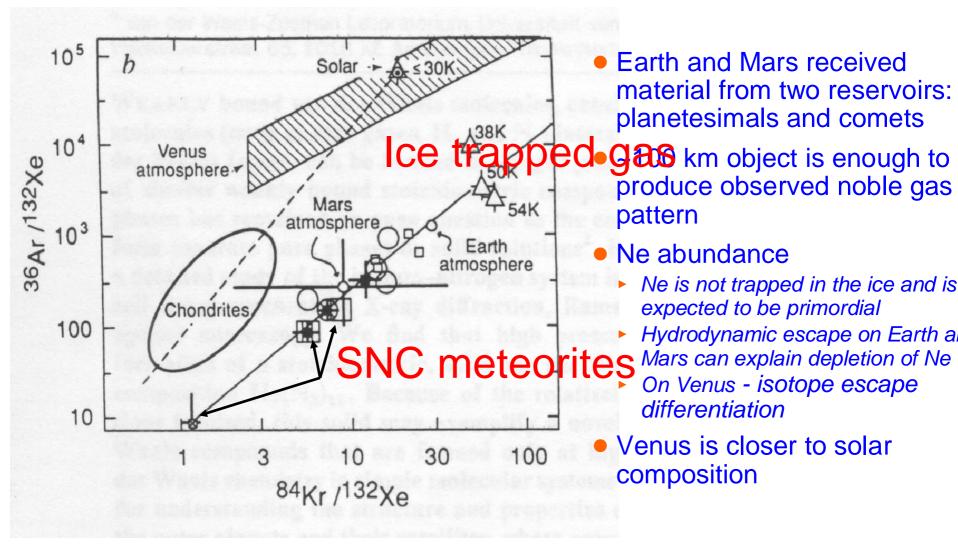
Family of the Sun


Composition of the nebula

Records of atmospheric evolution

Noble gases on terrestrial planets

- Terrestrial atmospheres were degassed from planetesimals, not accreted from nebula
- Gases (except Ne) were trapped in the planetesimals at ~30K
- Venus atmosphere is more primordial
- Mars and Earth has possibly survived severe impact erosion
- Possibly two reservoirs planetesimals and comets - fed Mars and Earth
- (D/H)_V ~150 (D/H)_E ; (D/H)_M ~ 6 (D/H)_E
 → much greater amonts of water existed on Venus and Mars


Accumulation of planetary atmospheres

- Outgassing during accretion phase
 - ► M ~ 0.1 M_{earth}
 - ► T~ 1600 K
 - Melting of the solid body, differentiation, and outgassing
- Volcanic eruptions
- Cometary supply

Two reservoirs of atmospheric material

Erosion of planetary atmospheres

Thermal or Jeans escape

- Exobase: free path~scale height
- Simple estimate: V_{th} > V_{esc}
- Maxwellian velocity distribution
- Escape parameter: $\lambda = (V_{esc}/V_{th})^2$
- Jeans flux: $\Phi \sim NV_{th}(1+\lambda)exp(-\lambda) \sim 10^7 \text{ cm}^{-2} \text{ s}^{-1} \text{ H}$ atoms from Earth
- Isotopic fractionation

Non-thermal escape

- **Dissociation and recombination**
- Charge exchange
- Sputtering
- Solar wind sweeping

Hydrodynamic escape (blow off)

- Planets during accretion period
- Impact erosion (d>H) $M_{e}/M \sim d^{2}$

Main factors and processes in evolution of terrestrial planetary atmospheres

∔ Earth

- removal of CO₂ by silicate weathering (Urey reaction)
- $CO_2 + H_2O + CaSiO_3 \rightarrow carbonates (CaCO_3)$
- CO₂ recycling by plate tectonics
- self-regulation of CO2 abundance by weathering and outgassing
- photosynthesis of O₂
- antropogenic production of CO₂

\rm 4 Venus

- **I** no liquid water, no plate tectonics $\rightarrow CO_2$ stays in the atmosphere
- global resurfacing ~700 MiY ago → sulfur-bearing gases

\rm Hars

- **4** possible impact erosion
- **4**small size of the planet
- obliquity changes
- **4** warmer and wetter climate before ~3.8 BiY \rightarrow CO₂ loss

Why Earth, Mars, Venus so different?

Property	Venus	Earth	Mars
Mass [10 ¹² Gt]	4.9	6.0	0.64
Radius [km]	6049	6371	3390
SolarDistance [AU]	0.72	1.0	1.52
SolarConstant [W/m ²]	2613	1367	589
Atmosphere Mass[106Gt]	500	5.1	0.31
N ₂ [%]	<2	78	<3
O ₂ [%]	<10 ⁻⁴	21	<0.25
CO ₂ [%]	98	0.035	>96
H ₂ O[%]	<0.3	<4	<0.001
D/H ratio [10⁴]	240	1.5	9
EscapeVelocity** [km/s]	10.3	10.8	4.8
EscapeEnergy [eV]	H:0.54 O:8.64	H:0.61 O:9.69	H:0.12 O:1.91
ExobaseTemp* [K]	275	1000	300
ExobaseAltitude [*] [km]	200	500	250
IonosphereAltitude*** [km]	120	300	150
ThermalEscape [t/a]	0.0013	2800	7800

*Upper limit of collisional domain **at exobase ***electron peak density Fränz,Dubinin,Roussos Mars-Venus Escape